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Background

1 Get data: ξ1, . . . , ξN, where ξi := (d, y)i

2 Choose a classifier

hx(d)→ y

hx

( )
→ cat

(1)

3 Choose a loss function: ℓ(hx(d, y)) ≥ 0
4 Solve the training problem:

min
x∈Rd

1
N

N∑
i=1

ℓ (hx(di), yi) (2)
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Background

Finite-sum empirical risk minimization problem:

f (x⋆) = min
x∈Rd

{
f (x) :=

1
N

N∑
i=1

(
fi(x) := F(x, ξi)

)}
(3)

• The loss function of i-th data ξi := (di, yi)

• Baseline method: Stochastic Gradient Descent (SGD)
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Background: Stochastic reformulation of finite-sum problems: SGD with arbitrary sampling

Random sampling vector v = (v1, . . . , vN) ∼ D with E [vi] = 1 for i = 1, . . . ,N.

f (x) :=
1
N

N∑
i=1

fi(x) =
1
N

N∑
i=1

E [vi] fi(x) = E

 1
N

N∑
i=1

vifi(x)︸ ︷︷ ︸
=: fv(x)

 (Stochastic Reformulation)
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1
N

N∑
i=1

fi(x) (4)

Stochastic Reformulation

min
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Minimizing the expectation of random
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The convergence of mini-batch SGD

Assumption 1
• The function f (x) we are minimizing is lower bounded from below by f ⋆ := f (x⋆), and

each fi is L-smooth satisfying ∥∇fi(y)−∇fi(x)∥ ≤ L ∥y−x∥

• The stochastic gradients satisfy E [∇fi(x)] =∇f (x) and E ∥∇fi(x)−∇f (x)∥2 ≤ σ2.

• When iterations T →∞, it holds that E
[∥∥∇f (x(t))

∥∥2
]
→ 0

• E
[∥∥∇f (x(t))

∥∥2
]
→ 0 implies the sequence converges to a stationary solution
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Theorem 1 (Convergence rate of mini-batch SGD for non-convex functions)

• L-smoothness

1
T

T−1∑
t=0

E
[∥∥∥∇f (x(t))

∥∥∥2
]
≤ O

 L (f (x0)− f ⋆)

T
+

σ√
B

√
L (f (x0)− f ⋆)

T
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Issues of SGD—from the perspective of loss landscape

(a) ResNet w/o skip connections. (b) ResNet w/ skip connections.

Figure: The surfaces of ResNet-56 w/ and w/o skip connections [12].

[12] Li et al. Visualizing the Loss Landscape of Neural Nets. NeurIPS 2018.
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Issues of SGD—from the perspective of loss landscape

Challenging optimization loss landscape!

Figures borrowed from https://cs182sp21.github.io/static/slides/lec-4.pdf
8 / 50
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Issues of SGD—from the perspective of loss landscape

x0

x1

−η∇F(x0, ξi)

• Challenges # 1: loss function has high condition number.
→ very slow progress along shallow dimension, jitter along steep direction.

• Challenges # 2 & more: plateaus & saddle points.

→ cannot just choose tiny learning rates to prevent oscillation!
→ need learning rates to be large enough not to get stuck in a plateau.
→ saddle points have very small gradients: but much more common in high dimension.

Visualizations based on Gabriel Goh’s distill.pub article: https://distill.pub/2017/momentum/
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Improvement directions: leveraging the curvature information

Can we find a better descent direction in the loss landscape?
Yes! By leveraging the curvature information through Newton’s method.

Taylor expansion:

f (x) ≈ f (x0) + f ′(x0)(x− x0) +
1
2

f ′′(x0)(x− x0)
2 (7)

Multivariate case:

f (x) ≈ f (x0) +∇xf (x0)︸ ︷︷ ︸
gradient

(x− x0) +
1
2
(x− x0)

⊤∇2
xf (x0)︸ ︷︷ ︸

Hessian

(x− x0)

(8)

Solution (can optimize this analytically!):

x⋆ ← x0 −
(
∇2

xf (x0)
)−1∇xf (x0) (9)

9 / 50
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Improvement directions: trade-offs and approximations

Q: Why is Newton’s method not a viable way to improve neural network optimization?

GD (w/o Hessian): O(N) v.s. GD (w/ Hessian)1: O(N3)

We would prefer methods that don’t require second derivatives, but somehow
“stabilize” / “accelerate” gradient descent instead.

1if using naive approach, though fancy methods can be much faster if they avoid forming the Hessian explicitly.
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Momentum method

w/o momentum

w/ momentum

Intuition: averaging together successive gradients yield a much better direction!

• if successive gradient step point in different directions

→ we should cancel off the directions that disagree

• if successive gradient step point in similar directions

→ we should go faster in that direction

mt = βmt−1 +∇F(xt, ξt) , xt+1 = xt − ηmt (SGD w/ momentum)

xt+1 = x0 − η

t∑
i=1

∇F(xi, ξi) (Unroll SGD w/o momentum)

xt+1 = x0 − η

t∑
i=1

1− βt+1−i

β − 1
∇F(xi, ξi) (Unroll SGD w/ momentum)

Visualizations based on Gabriel Goh’s distill.pub article: https://distill.pub/2017/momentum/
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Methods that manipulate gradient scale

Intuition behind ∇F(xi, ξi):
• sign:

the sign of the gradient tells us which way to go along each dimension;
• magnitude: the magnitude is not so great, and could be even worse:

→ overall magnitude of the gradient can change drastically during the optimization,

making learning rates hard to tune.

Idea: normalize out the magnitude of the gradient along each dimension.

12 / 50
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Methods that manipulate gradient scale: RMSProp, AdaGrad, and their differences

AdaGrad [2] (estimate per-dimension cumulative magnitude):

vt = vt−1 + (∇F(xt, ξt))
2 (roughly the squared length of each dimension)

xt+1 = xt − η
∇F(xt, ξt)√

vt
(each dimension is divided by its magnitude)

RMSProp (estimate per-dimension magnitude):

vt = βvt−1 + (1− β) (∇F(xt, ξt))
2 (roughly the squared length of each dimension)

xt+1 = xt − η
∇F(xt, ξt)√

vt
(each dimension is divided by its magnitude)

Remarks:

• AdaGrad has some appealing guarantees for convex problems.

→ AdaGrad originally proposed to benefit from sparse data.
→ Learning rate effectively “decreases” over time: good for convex (bad for non-convex).

• RMSProp tends to be much better for deep learning (and most non-convex problems)

RMSProp. https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf.

[2] Duchi et al. Adaptive subgradient methods for online learning and stochastic optimization. COLT 2010. 13 / 50
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Adam: combining momentum and RMSProp

Idea:

• Maintain exponential moving averages of gradient and its square
• Update proportional to average gradient√

average squared gradient

mt = β1mt−1 + (1− β1)∇F(xt, ξt) (first moment estimate)

vt = β2vt−1 + (1− β2) (∇F(xt, ξt))
2 (second moment estimate)

xt+1 = xt − η
mt√
vt + ϵ

= xt −
η√

vt + ϵ︸ ︷︷ ︸
element-wise stepsize

mt (update step)

where compared to RMSProp, Adam

• replaces η√
vt+ϵ
∇F(xt, ξt) by η√

vt+ϵ
mt.

• adds bias correction (omitted in the expression above): it avoids large stepsizes in early
stages of run (especially when β2 is close to 1).

[7] Kingma et al. Adam: A method for stochastic optimization. ICLR 2015 (Google Scholar 12w+)
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Weight decay in SGD and Adam: why AdamW matters
Many learning problems optimize the loss with L2 norm penalty:

f̃ (x) = f (x) + λ ∥x∥2
2 , (10)

On the discrepancy between L2 regularization and weight decay:

• L2 regularization and weight decay are not identical (for momentum/adaptive SGD).
• L2 regularization is not effective in Adam.
• Weight decay is equally effective in both SGD and Adam.

Decoupled SGD with momentum: (same trick applies to Adam)

mt+1 = βmt + (1− β)

(
∇F(xt, ξt) + λxt

gradient of loss with L2 penalty

)
(11)

xt+1 = xt −mt − 2ηλxt
weight decay

(12)

AdamW is widely used in training STOA NNs from scratch or fine-tuning on downstream tasks.

[16] Loshchilov et al. Decoupled weight decay regularization. ICLR 2018 (Google Scholar 4800+)
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x− η∇x

(
f (x) + λ ∥x∥2

2

)
SGD on L2-norm penalty

⇐⇒
∇x∥x∥2

2=2x
(1− 2ηλ)x− η∇xf (x)

weight decay
(11)

On the discrepancy between L2 regularization and weight decay:

• L2 regularization and weight decay are not identical (for momentum/adaptive SGD).
• L2 regularization is not effective in Adam.
• Weight decay is equally effective in both SGD and Adam.

Decoupled SGD with momentum: (same trick applies to Adam)

mt+1 = βmt + (1− β)

(
∇F(xt, ξt) + λxt

gradient of loss with L2 penalty

)
(12)

xt+1 = xt −mt − 2ηλxt
weight decay

(13)

AdamW is widely used in training STOA NNs from scratch or fine-tuning on downstream tasks.

[16] Loshchilov et al. Decoupled weight decay regularization. ICLR 2018 (Google Scholar 4800+)
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Lookahead Optimizer: k steps forward, 1 step back

Different from the ideas e.g.,

• Adaptive element-wise learning rate, e.g., AdaGrad and Adam

• Accelerated optimization, e.g., Heavy-ball momentum and Nesterov momentum.
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Lookahead Optimizer: k steps forward, 1 step back

A natural way to explore and exploit the landscape!
19 / 50



• inner-loop optimization: k steps forward in SGD & LA
• outer-loop optimization: 1 step back in LA, while no step back in SGD

[25] Zhang et al. Lookahead optimizer: k steps forward, 1 step back. NeurIPS 2019.
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Flat Minima in Deep Learning

In many cases,

DL→ minimizing a loss function ℓ(θ)

Highly non-convex (many local minima)!

• Q) Which is better, θA or θB?
• A) We prefer θA to θB even though ℓ(θA) > ℓ(θB)

• Why? Because θA is more robust.
• Imagine some perturbation: θA → θ′

A,θB → θ′
B ⇒ ℓ(θ′

A)≪ ℓ(θ′
B).
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Let’s seek for a Flat Minimum

Flat Minima = Robust models (12)
= Resilient to data noise or model corruption (13)
= (often encountered in AI applications) (14)

But, how?
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Sharpness-Aware Minimization (SAM)

Idea of SAM:

Define a robust loss ℓR(θ) as worst-case loss within a neighborhood of θ.

ℓR(θ) = max
ϵ∈Nθ

ℓ(θ + ϵ) (15)

[3] Foret et al. Sharpness-aware Minimization for Efficiently Improving Generalization. ICLR 2021.
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Intuition behind SAM

• Goal: Find the local minima θ that are generalizable to test samples

• Theorem (Flatness-based generalization bounds):

Theorem 2
With high probability over S, the flatness-based bound says:

LD(θ) ≤ LS(θ) +

[
max
∥ϵ∥2≤ρ

LS(θ + ϵ)− LS(θ)

]
︸ ︷︷ ︸

flatness measure

+h(∥θ∥2
2 /ρ

2) , (16)

where h(∥θ∥2
2 /ρ

2) is a strictly increasing function of θ. It decreases as the number of
samples n = |S| increases.
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Sharpness-Aware Minimization (SAM)

LD(θ) ≤ LS(θ) +

[
max
∥ϵ∥2≤ρ

LS(θ + ϵ)− LS(θ)

]
︸ ︷︷ ︸

flatness measure

+h(∥θ∥2
2 /ρ

2) (17)

= max
∥ϵ∥2≤ρ

LS(θ + ϵ) + h(∥θ∥2
2 /ρ

2) (18)
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Sharpness-Aware Minimization (SAM)

The objective of SAM becomes:

θ⋆ := argmin
θ

LD(θ) = argmin
θ

max
∥ϵ∥2≤ρ

LS(θ + ϵ) . (17)

• the optimal ϵ̂ is given by (linear approximation through first-order Taylor expansion)

ϵ̂ = argmax
∥ϵ∥p≤ρ

ϵ⊤∇θLS(θ) = ρ · sign (∇θLS(θ))
|∇θLS(θ)|q−1(
∥∇θLS(θ)∥q

q

)1/p , (18)

where 1/p + 1/q = 1

and the solution to a classical dual norm problem can solve this
approximation.

• substituting ϵ̂ gives a gradient estimator

∇θLSAM
S (θ) := ∇θLS(θ + ϵ̂) ≈ ∇θLS(θ)|θ+ϵ̂ (19)

27 / 50



Sharpness-Aware Minimization (SAM)

The objective of SAM becomes:

θ⋆ := argmin
θ

LD(θ) = argmin
θ

max
∥ϵ∥2≤ρ

LS(θ + ϵ) . (17)

• the optimal ϵ̂ is given by (linear approximation through first-order Taylor expansion)

ϵ̂ = argmax
∥ϵ∥p≤ρ

ϵ⊤∇θLS(θ) = ρ · sign (∇θLS(θ))
|∇θLS(θ)|q−1(
∥∇θLS(θ)∥q

q

)1/p , (18)

where 1/p + 1/q = 1

and the solution to a classical dual norm problem can solve this
approximation.

• substituting ϵ̂ gives a gradient estimator

∇θLSAM
S (θ) := ∇θLS(θ + ϵ̂) ≈ ∇θLS(θ)|θ+ϵ̂ (19)

27 / 50



Sharpness-Aware Minimization (SAM)

The objective of SAM becomes:

θ⋆ := argmin
θ

LD(θ) = argmin
θ

max
∥ϵ∥2≤ρ

LS(θ + ϵ) . (17)

• the optimal ϵ̂ is given by (linear approximation through first-order Taylor expansion)

ϵ̂ = argmax
∥ϵ∥p≤ρ

ϵ⊤∇θLS(θ) = ρ · sign (∇θLS(θ))
|∇θLS(θ)|q−1(
∥∇θLS(θ)∥q

q

)1/p , (18)

where 1/p + 1/q = 1

and the solution to a classical dual norm problem can solve this
approximation.

• substituting ϵ̂ gives a gradient estimator

∇θLSAM
S (θ) := ∇θLS(θ + ϵ̂) ≈ ∇θLS(θ)|θ+ϵ̂ (19)

27 / 50



Sharpness-Aware Minimization (SAM)

The objective of SAM becomes:

θ⋆ := argmin
θ

LD(θ) = argmin
θ

max
∥ϵ∥2≤ρ

LS(θ + ϵ) . (17)

• the optimal ϵ̂ is given by (linear approximation through first-order Taylor expansion)

ϵ̂ = argmax
∥ϵ∥p≤ρ

ϵ⊤∇θLS(θ) = ρ · sign (∇θLS(θ))
|∇θLS(θ)|q−1(
∥∇θLS(θ)∥q

q

)1/p , (18)

where 1/p + 1/q = 1

and the solution to a classical dual norm problem can solve this
approximation.

• substituting ϵ̂ gives a gradient estimator

∇θLSAM
S (θ) := ∇θLS(θ + ϵ̂) ≈ ∇θLS(θ)|θ+ϵ̂ (19)

27 / 50



Sharpness-Aware Minimization (SAM)

The objective of SAM becomes:

θ⋆ := argmin
θ

LD(θ) = argmin
θ

max
∥ϵ∥2≤ρ

LS(θ + ϵ) . (17)

• the optimal ϵ̂ is given by (linear approximation through first-order Taylor expansion)

ϵ̂ = argmax
∥ϵ∥p≤ρ

ϵ⊤∇θLS(θ) = ρ · sign (∇θLS(θ))
|∇θLS(θ)|q−1(
∥∇θLS(θ)∥q

q

)1/p , (18)

where 1/p + 1/q = 1 and the solution to a classical dual norm problem can solve this
approximation.

• substituting ϵ̂ gives a gradient estimator

∇θLSAM
S (θ) := ∇θLS(θ + ϵ̂) ≈ ∇θLS(θ)|θ+ϵ̂ (19)

27 / 50



Sharpness-Aware Minimization (SAM)

The objective of SAM becomes:

θ⋆ := argmin
θ

LD(θ) = argmin
θ

max
∥ϵ∥2≤ρ

LS(θ + ϵ) . (17)

• the optimal ϵ̂ is given by (linear approximation through first-order Taylor expansion)

ϵ̂ = argmax
∥ϵ∥p≤ρ

ϵ⊤∇θLS(θ) = ρ · sign (∇θLS(θ))
|∇θLS(θ)|q−1(
∥∇θLS(θ)∥q

q

)1/p , (18)

where 1/p + 1/q = 1 and the solution to a classical dual norm problem can solve this
approximation.

• substituting ϵ̂ gives a gradient estimator

∇θLSAM
S (θ) := ∇θLS(θ + ϵ̂) ≈ ∇θLS(θ)|θ+ϵ̂ (19)

27 / 50



• The gradient estimator of SAM is given by:

∇θLSAM
S (θ) ≈ ∇θLS(θ)|θ+ϵ̂ (20)

• Recall that SAM requires 2-step gradient
descent (thus, twice slow)

• 1st for computing ϵ̂ using ∇θLS(θ)
• 2nd for computing ∇θLS(θ)|θ+ϵ̂

• Set p = 2-norm and neighborhood-size
ρ = 0.05 as a default setup.

wt

wt + 1

wSAM
t + 1

wadv

L(wt)

|| L(wt)||2 L(wt)

L(wadv)

From original SAM paper.
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Verification of the flatness

(a) ERM. (b) SAM.

Loss surface visualization.
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Verification of the flatness
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Results (i.e., SAM > ERM)

• SAM consistently improves classification tasks, particularly with label noises

Model Epoch SAM Standard Training (No SAM)
Top-1 Top-5 Top-1 Top-5

ResNet-50 100 22.5±0.1 6.28±0.08 22.9±0.1 6.62±0.11

200 21.4±0.1 5.82±0.03 22.3±0.1 6.37±0.04

400 20.9±0.1 5.51±0.03 22.3±0.1 6.40±0.06

ResNet-101 100 20.2±0.1 5.12±0.03 21.2±0.1 5.66±0.05

200 19.4±0.1 4.76±0.03 20.9±0.1 5.66±0.04

400 19.0±<0.01 4.65±0.05 22.3±0.1 6.41±0.06

ResNet-152 100 19.2±<0.01 4.69±0.04 20.4±<0.0 5.39±0.06

200 18.5±0.1 4.37±0.03 20.3±0.2 5.39±0.07

400 18.4±<0.01 4.35±0.04 20.9±<0.0 5.84±0.07

Table: Test error rates for ResNets trained on ImageNet, with and without SAM.
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Results on ViT (and MLP-Mixer)

(c) ResNet (d) ViT (e) Mixer (f) ViT-SAM (g) Mixer-SAM

Figure: Cross-entropy loss landscapes of ResNet-152, ViT-B/16, and Mixer-B/16. ViT and
MLP-Mixer converge to sharper regions than ResNet when trained on ImageNet with the basic
Inception-style preprocessing. SAM significantly smooths the landscapes.
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Results on ViT (and MLP-Mixer)

Table: Number of parameters, Hessian dominate eigenvalue λmax, training error at convergence Ltrain,
average flatness LN

train, accuracy on ImageNet, and accuracy/robustness on ImageNet-C. ViT and
MLP-Mixer suffer divergent κ and converge at sharp regions; SAM rescues that and leads to better
generalization.

ResNet-152 ResNet-152-
SAM ViT-B/16 ViT-B/16-

SAM Mixer-B/16 Mixer-B/16-
SAM

#Params 60M 87M 59M
Hessian λmax 179.8 42.0 738.8 20.9 1644.4 22.5

Ltrain 0.86 0.90 0.65 0.82 0.45 0.97
LN

train
⋆ 2.39 2.16 6.66 0.96 7.78 1.01

ImageNet (%) 78.5 79.3 74.6 79.9 66.4 77.4
ImageNet-C (%) 50.0 52.2 46.6 56.5 33.8 48.8
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Why Distributed Deep Learning Infrastructure Matters

Recall that

1
T

T−1∑
t=0

E
[∥∥∥∇f (x(t))

∥∥∥2
]
≤ O

(
σ√
BT

)

To achieve an ϵ-accurate solution, i.e., 1
T

∑T
t=0 E

[∥∥∇f (x(t))
∥∥2
]
≤ ϵ, it requires O

(
σ2

Bϵ2

)
.

SGD Mini-batch SGD
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Why Distributed Deep Learning Infrastructure Matters

Mini-batch SGD

Data-parallelism

Increasing B may linearly reduce the required steps to reach a target performance.
B := Bloc︸︷︷︸

normally fixed

n︸︷︷︸
increasing
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Various Types of Distributed Learning Infrastructure

Star/Parameter server
O ((ts + twm)n)

Complete
O

(
ts log2 n + tw( n− 1 )m

) All-Reduce
O

(
(ts + twm) log2 n

)

ts is the latency, tw is inverse bandwidth, m is the message size, and n is the number of nodes.

• Parameter Server’s bandwidth will be decreased by the number of nodes, and is
sensitive to the central failures.

• All-Reduce enables full bandwidth.
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Extending Notations to Distributed Optimization (with a slight abuse of notation)

• To minimize a sum of stochastic functions, with only access to stochastic samples:

f (x⋆) = min
x∈Rd

{
f (x) :=

1
n

n∑
i=1

(fi(x) := Eξ∈Di [Fi(x; ξ)])

}
.

• The functions fi represents the loss function on client/node i with local dataset Di.
• Each local distribution Di may be

1 identical, e.g. data center case (achieved by shuffling across nodes)
2 different, e.g. EdgeAI case (thus has data heterogeneity issue).

• Each of these clients/nodes i performs 1 local update.
• The models are aggregated to form the new global model:

x(t+1) ← 1
n

∑n
i=1

(
x(t) − ηlgi(x

(t)
i )

)
, (C-SGD)

where ηl is the local step-size and gi(x
(t)
i ) := ∇Fi(x

(t)
i ; ξ

(t)
i ).

• The convergence rate becomes (under the same assumptions as SGD)

1
T

T−1∑
t=0

E
[∥∥∥∇f (x(t))

∥∥∥2
]
≤ O

(
σ√

nBlocT

)
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Speed-up of Distributed Deep Learning (Data Parallelism)

Table: Distributed training ResNet-50 on ImageNet
Metrics 4 nodes (32 GPUs) 8 nodes (64 GPUs) 16 nodes (128 GPUs) 32 nodes (256 GPUs) Pattern

All-Reduce SGD Accuracy 76.2% 76.4% 76.3% 76.2% ≈
Time 22.0 hrs. 14.0 hrs. 8.5 hrs. 5.1 hrs. ↘

Scaling Deep Learning training with more GPUs!

[1] Assran et al. Stochastic gradient push for distributed deep learning. ICML 2019.
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No Free Lunch in Distributed Deep Learning

• Limitation 1: Diminishing returns of data parallelism with large mini-batch sizes.

• Limitation 2: Communication bottleneck hinders the training scalability.
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Answers to the Aforementioned Limitations

Large-scale training in the data center has some interesting challenges:

1 The diminishing return of large-batch training [17, 24, 15, 14]

2 Communication-efficient training techniques
• Less frequent communication: Local SGD [18, 15, 10]
• Reducing communication cost per round—compressed communication: [19, 6, 22, 9, 21]
• Reducing communication cost per round—decentralized communication: [10, 11, 8, 20]

[17] Shallue et al. Measuring the effects of data parallelism on neural network training. JMLR 2019.

[24] You et al. Imagenet training in minutes. ICPP 2018.

[19] Stich et al. Sparsified sgd with memory. NeurIPS 2018.

[18] Stich et al. Local SGD converges fast and communicates little. ICLR 2019.

[6] Karimireddy et al. Error Feedback Fixes SignSGD and other Gradient Compression Schemes. ICML 2019.

[22] Vogels et al. PowerSGD: Practical Low-Rank Gradient Compression for Distributed Optimization. NeurIPS 2019.

[21] Vogels et al. Practical Low-Rank Communication Compression in Decentralized Deep Learning. NeurIPS 2020.

[10] Koloskova et al. A unified theory of decentralized SGD with changing topology and local updates. ICML 2020.

[15] Lin et al. Don’t Use Large Mini-batches, Use Local SGD. ICLR 2020.

[14] Lin et al. Extrapolation for Large-batch Training in Deep Learning. ICML 2020.

[9] Koloskova*, Lin*, et al. Decentralized Deep Learning with Arbitrary Communication Compression. ICLR 2020.

[11] Kong*, Lin*#, et al. Consensus Control for Decentralized Deep Learning. ICML 2021.

[8] Koloskova et al. An improved analysis of gradient tracking for decentralized machine learning. NeurIPS 2021.

[20] Vogels et al. Relaysum for decentralized deep learning on heterogeneous data. NeurIPS 2021.
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All previous aspects are about efficiency!

What if the privacy is a concern?
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Where does ML data come from?

Concerns, e.g., data quality and data privacy, are rising!
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Collaborative learning alleviates the data privacy concern

An example: Federated Learning (FL)

Instead of sending sensitive client data over the internet, just share client models!
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The backbone of FL: Federated Averaging (FedAvg)

Client 1 Client 2 Client 3

Finite-sum empirical risk minimization problem:

f (x⋆) = min
x∈Rd

{
f (x) :=

1
n

n∑
i=1

(
fi(x)

:= Eξ∈Di [Fi(x; ξ)]

)}
.

• The function fi represents the loss function on client i;

• Di indicates the local data distribution of client i;

• Fi(x, ξ) corresponds to the sample-wise loss function;

• FedAvg performs multiple local update steps per round.
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• Di indicates the local data distribution of client i;

• Fi(x, ξ) corresponds to the sample-wise loss function;

• FedAvg performs multiple local update steps per round.
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Challenges of FL [13, 4, 23]

Communication overhead
slow & unreliable networks

Data heterogeneity
highly non-identically distributed data

Systems heterogeneity
variable hardware, power, etc

Privacy concerns
privacy leakage

[13] Li et al. Federated Learning: Challenges, Methods, and Future Directions. 2020.

[4] Kairouz et al. Advances and open problems in federated learning. 2021.

[23] Wang et al. A Field Guide to Federated Optimization. 2021.
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Data heterogeneity in FL

Client drift issue defined in [5].

Data-dissimilarity ζ2 > 0 causes drift when doing local steps.

Ei

[
∥∇fi(x)−∇f (x)∥2

]
≤ ζ2 (21)

[5] Karimireddy et al. SCAFFOLD: Stochastic controlled averaging for federated learning. ICML 2020.
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1 Data-parallelism is the current workhorse for large-scale deep learning training

• Theoretically linear speedup by adding more GPUs
• Diminishing returns for large-batch region
• Communication bottleneck for large-scale training

2 Communication-efficient training techniques

• Compressed communication

• A line of research requires unbiased gradient estimator, which is non-trivial
• Error-feedback enables the convergence for arbitrary compressors, even for biased estimator

• Decentralized communication

• Nodes only communicate with its neighborhood, reducing the cost per iteration.
• Trade-off between degraded test accuracy and improved communication efficiency.
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Thanks & Question Time!
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