Optimization for Deep Learning

Tao LIN

Learning and INference Systems (LINs) Lab, Westlake University

March 3, 2024

1 Stochastic Gradient Descent (SGD) and Mini-batch SGD

2 Accelerated and Stabilized Optimization Methods

3 Advanced Optimization Methods

Introduction to Distributed Deep Learning

1 Get data: $\boldsymbol{\xi}_1, \ldots, \boldsymbol{\xi}_N$, where $\boldsymbol{\xi}_i := (\mathbf{d}, y)_i$

1 Get data: ξ_1, \dots, ξ_N , where $\xi_i := (\mathbf{d}, y)_i$ **2** Choose a classifier

(1)

1 Get data: $\boldsymbol{\xi}_1, \dots, \boldsymbol{\xi}_N$, where $\boldsymbol{\xi}_i := (\mathbf{d}, y)_i$ **2** Choose a classifier

$$h_{\mathbf{x}}(\mathbf{d}) o y$$
 $h_{\mathbf{x}}\left(\begin{array}{c} \mathbf{A} \\ \mathbf{A} \end{array}
ight) o \mathsf{cat}$

(1)

3 Choose a loss function: $\ell(h_x(\mathbf{d}, y)) \ge 0$

1 Get data: ξ_1, \ldots, ξ_N , where $\xi_i := (\mathbf{d}, y)_i$ **2** Choose a classifier

$$h_{\mathbf{x}}(\mathbf{d}) o y$$
 $h_{\mathbf{x}}\left(\begin{array}{c} \mathbf{A} \\ \mathbf{A} \end{array}
ight) o \mathbf{cat}$

(1)

3 Choose a loss function: $\ell(h_x(\mathbf{d}, y)) \ge 0$ 4 Solve the *training problem*:

$$\min_{\mathbf{x}\in\mathbb{R}^d} \frac{1}{N} \sum_{i=1}^N \ell\left(h_{\mathbf{x}}(\mathbf{d}_i), y_i\right)$$
(2)

Finite-sum empirical risk minimization problem:

$$f(\mathbf{x}^{\star}) = \min_{\mathbf{x} \in \mathbb{R}^d} \left\{ f(\mathbf{x}) := \frac{1}{N} \sum_{i=1}^N \left(f_i(\mathbf{x}) := F(\mathbf{x}, \boldsymbol{\xi}_i) \right) \right\}$$
(3)

Finite-sum empirical risk minimization problem:

$$f(\mathbf{x}^{\star}) = \min_{\mathbf{x} \in \mathbb{R}^d} \left\{ f(\mathbf{x}) := \frac{1}{N} \sum_{i=1}^N \left(f_i(\mathbf{x}) := F(\mathbf{x}, \boldsymbol{\xi}_i) \right) \right\}$$
(3)

• The loss function of *i*-th data $\boldsymbol{\xi}_i := (\mathbf{d}_i, y_i)$

4/50

Finite-sum empirical risk minimization problem:

$$f(\mathbf{x}^{\star}) = \min_{\mathbf{x} \in \mathbb{R}^d} \left\{ f(\mathbf{x}) := \frac{1}{N} \sum_{i=1}^N \left(f_i(\mathbf{x}) := \frac{F(\mathbf{x}, \boldsymbol{\xi}_i)}{\sqrt{2}} \right) \right\}$$
(3)

• The loss function of *i*-th data $\boldsymbol{\xi}_i := (\mathbf{d}_i, y_i)$ \longleftarrow

$$\mathbf{x}^{(t+1)} = \mathbf{x}^{(t)} - \eta \nabla F(\mathbf{x}^{(t)}, \boldsymbol{\xi}_i)$$
(4)

Finite-sum empirical risk minimization problem:

$$f(\mathbf{x}^{\star}) = \min_{\mathbf{x} \in \mathbb{R}^d} \left\{ f(\mathbf{x}) := \frac{1}{N} \sum_{i=1}^N \left(f_i(\mathbf{x}) := F(\mathbf{x}, \boldsymbol{\xi}_i) \right) \right\}$$
(3)

• The loss function of *i*-th data $\boldsymbol{\xi}_i := (\mathbf{d}_i, y_i)$ \leftarrow

$$\mathbf{x}^{(t+1)} = \mathbf{x}^{(t)} - \eta \nabla F(\mathbf{x}^{(t)}, \boldsymbol{\xi}_i)$$
(4)

• *n* is step-size/learning rate

Finite-sum empirical risk minimization problem:

$$f(\mathbf{x}^{\star}) = \min_{\mathbf{x} \in \mathbb{R}^d} \left\{ f(\mathbf{x}) := \frac{1}{N} \sum_{i=1}^N \left(f_i(\mathbf{x}) := F(\mathbf{x}, \boldsymbol{\xi}_i) \right) \right\}$$
(3)

• The loss function of *i*-th data $\boldsymbol{\xi}_i := (\mathbf{d}_i, y_i)$ \leftarrow

$$\mathbf{x}^{(t+1)} = \mathbf{x}^{(t)} - \eta \nabla F(\mathbf{x}^{(t)}, \boldsymbol{\xi}_i)$$
(4)
• η is step-size/learning rate \leftarrow
• sampled i.i.d. $i \in \{1, \dots, N\}$ \leftarrow
• $\mathbf{x}^{(1)}$ $\mathbf{x}^{(2)}$ $\mathbf{x}^{(3)}$

Finite-sum empirical risk minimization problem:

$$f(\mathbf{x}^{\star}) = \min_{\mathbf{x} \in \mathbb{R}^d} \left\{ f(\mathbf{x}) := \frac{1}{N} \sum_{i=1}^N \left(f_i(\mathbf{x}) := F(\mathbf{x}, \boldsymbol{\xi}_i) \right) \right\}$$
(3)

• The loss function of *i*-th data $\boldsymbol{\xi}_i := (\mathbf{d}_i, y_i) \longleftarrow$

$$\mathbf{x}^{(t+1)} = \mathbf{x}^{(t)} - \frac{1}{B} \sum_{i \in \mathcal{B}} \eta \nabla f_i(\mathbf{x})$$

Finite-sum empirical risk minimization problem:

$$f(\mathbf{x}^{\star}) = \min_{\mathbf{x} \in \mathbb{R}^d} \left\{ f(\mathbf{x}) := \frac{1}{N} \sum_{i=1}^N \left(f_i(\mathbf{x}) := F(\mathbf{x}, \boldsymbol{\xi}_i) \right) \right\}$$
(3)

• The loss function of *i*-th data $\boldsymbol{\xi}_i := (\mathbf{d}_i, y_i) \longleftarrow$

$$\mathbf{x}^{(t+1)} = \mathbf{x}^{(t)} - \frac{1}{B} \sum_{i \in \mathcal{B}} \eta \nabla f_i(\mathbf{x})$$

Random sampling vector $\mathbf{v} = (v_1, \dots, v_N) \sim \mathcal{D}$ with $\mathbb{E}[v_i] = 1$ for $i = 1, \dots, N$.

Random sampling vector $\mathbf{v} = (v_1, \dots, v_N) \sim \mathcal{D}$ with $\mathbb{E}[v_i] = 1$ for $i = 1, \dots, N$.

$$f(\mathbf{x}) := \frac{1}{N} \sum_{i=1}^{N} f_i(\mathbf{x}) = \frac{1}{N} \sum_{i=1}^{N} \mathbb{E}[v_i] f_i(\mathbf{x}) = \mathbb{E}\left[\underbrace{\frac{1}{N} \sum_{i=1}^{N} v_i f_i(\mathbf{x})}_{=:f_v(\mathbf{x})}\right]$$

(Stochastic Reformulation)

Background: Stochastic reformulation of finite-sum problems: SGD with arbitrary sampling

Random sampling vector $\mathbf{v} = (v_1, \dots, v_N) \sim \mathcal{D}$ with $\mathbb{E}[v_i] = 1$ for $i = 1, \dots, N$.

г

Ъ

$$f(\mathbf{x}) := \frac{1}{N} \sum_{i=1}^{N} f_i(\mathbf{x}) = \frac{1}{N} \sum_{i=1}^{N} \mathbb{E}\left[v_i\right] f_i(\mathbf{x}) = \mathbb{E}\left[\underbrace{\frac{1}{N} \sum_{i=1}^{N} v_i f_i(\mathbf{x})}_{=:f_v(\mathbf{x})}\right]$$

(Stochastic Reformulation)

Background: Stochastic reformulation of finite-sum problems: SGD with arbitrary sampling

Random sampling vector
$$\mathbf{v} = (v_1, \dots, v_N) \sim \mathcal{D}$$
 with $\mathbb{E}[v_i] = 1$ for $i = 1, \dots, N$.

г

п

$$f(\mathbf{x}) := \frac{1}{N} \sum_{i=1}^{N} f_i(\mathbf{x}) = \frac{1}{N} \sum_{i=1}^{N} \mathbb{E}[v_i] f_i(\mathbf{x}) = \mathbb{E} \left[\underbrace{\frac{1}{N} \sum_{i=1}^{N} v_i f_i(\mathbf{x})}_{=:f_v(\mathbf{x})} \right]$$

(Stochastic Reformulation)

Stochastic Reformulation

$$\min_{\mathbf{x}\in\mathbb{R}^d}\mathbb{E}\left[f_v(\mathbf{x})\right] \tag{5}$$

Minimizing the expectation of **random linear combinations** of original function

Background: Stochastic reformulation of finite-sum problems: SGD with arbitrary sampling

Random sampling vector
$$\mathbf{v} = (v_1, \dots, v_N) \sim \mathcal{D}$$
 with $\mathbb{E}[v_i] = 1$ for $i = 1, \dots, N$.

F

ы

$$f(\mathbf{x}) := \frac{1}{N} \sum_{i=1}^{N} f_i(\mathbf{x}) = \frac{1}{N} \sum_{i=1}^{N} \mathbb{E}\left[v_i\right] f_i(\mathbf{x}) = \mathbb{E}\left[\underbrace{\frac{1}{N} \sum_{i=1}^{N} v_i f_i(\mathbf{x})}_{=:f_v(\mathbf{x})}\right]$$

(Stochastic Reformulation)

Stochastic Reformulation

$$\min_{\mathbf{x}\in\mathbb{R}^d}\mathbb{E}\left[f_v(\mathbf{x})\right]$$
(5)

Minimizing the expectation of **random linear combinations** of original function

The distribution \mathcal{D} encodes any form of mini-batching / non-uniform sampling.

Assumption 1

• The function $f(\mathbf{x})$ we are minimizing is lower bounded from below by $f^* := f(\mathbf{x}^*)$, and each f_i is *L*-smooth satisfying $\|\nabla f_i(\mathbf{y}) - \nabla f_i(\mathbf{x})\| \le L \|\mathbf{y} - \mathbf{x}\|$

Assumption 1

- The function $f(\mathbf{x})$ we are minimizing is lower bounded from below by $f^* := f(\mathbf{x}^*)$, and each f_i is *L*-smooth satisfying $\|\nabla f_i(\mathbf{y}) \nabla f_i(\mathbf{x})\| \le L \|\mathbf{y} \mathbf{x}\|$
- The stochastic gradients satisfy $\mathbb{E} \left[\nabla f_i(\mathbf{x}) \right] = \nabla f(\mathbf{x})$ and $\mathbb{E} \left\| \nabla f_i(\mathbf{x}) \nabla f(\mathbf{x}) \right\|^2 \le \sigma^2$.

Assumption 1

- The function $f(\mathbf{x})$ we are minimizing is lower bounded from below by $f^* := f(\mathbf{x}^*)$, and each f_i is *L*-smooth satisfying $\|\nabla f_i(\mathbf{y}) \nabla f_i(\mathbf{x})\| \le L \|\mathbf{y} \mathbf{x}\|$
- The stochastic gradients satisfy $\mathbb{E} \left[\nabla f_i(\mathbf{x}) \right] = \nabla f(\mathbf{x})$ and $\mathbb{E} \left\| \nabla f_i(\mathbf{x}) \nabla f(\mathbf{x}) \right\|^2 \leq \sigma^2$.

Theorem 1 (Convergence rate of mini-batch SGD for non-convex functions)

$$\frac{1}{T}\sum_{t=0}^{T-1} \mathbb{E}\left[\left\|\nabla f(\mathbf{x}^{(t)})\right\|^2\right] \leq \mathcal{O}\left(\frac{\left|L\left(f(\mathbf{x}_0) - f^\star\right)\right|}{T}\right) + \frac{\sigma}{\sqrt{B}}\sqrt{\frac{L\left(f(\mathbf{x}_0) - f^\star\right)}{T}}\right)$$

Assumption 1

- The function $f(\mathbf{x})$ we are minimizing is lower bounded from below by $f^* := f(\mathbf{x}^*)$, and each f_i is *L*-smooth satisfying $\|\nabla f_i(\mathbf{y}) \nabla f_i(\mathbf{x})\| \le L \|\mathbf{y} \mathbf{x}\|$
- The stochastic gradients satisfy $\mathbb{E} \left[\nabla f_i(\mathbf{x}) \right] = \nabla f(\mathbf{x})$ and $\mathbb{E} \left\| \nabla f_i(\mathbf{x}) \nabla f(\mathbf{x}) \right\|^2 \le \sigma^2$.

Theorem 1 (Convergence rate of mini-batch SGD for non-convex functions)

• L-smoothness

$$\frac{1}{T}\sum_{t=0}^{T-1} \mathbb{E}\left[\left\|\nabla f(\mathbf{x}^{(t)})\right\|^{2}\right] \leq \mathcal{O}\left(\frac{L\left(f(\mathbf{x}_{0})-f^{\star}\right)}{T}\right) + \frac{\sigma}{\sqrt{B}}\sqrt{\frac{L\left(f(\mathbf{x}_{0})-f^{\star}\right)}{T}}\right)$$

Assumption 1

- The function $f(\mathbf{x})$ we are minimizing is lower bounded from below by $f^* := f(\mathbf{x}^*)$, and each f_i is *L*-smooth satisfying $\|\nabla f_i(\mathbf{y}) \nabla f_i(\mathbf{x})\| \le L \|\mathbf{y} \mathbf{x}\|$
- The stochastic gradients satisfy $\mathbb{E} \left[\nabla f_i(\mathbf{x}) \right] = \nabla f(\mathbf{x})$ and $\mathbb{E} \left\| \nabla f_i(\mathbf{x}) \nabla f(\mathbf{x}) \right\|^2 \le \sigma^2$.

Theorem 1 (Convergence rate of mini-batch SGD for non-convex functions)

• L-smoothness $\frac{1}{T} \sum_{t=0}^{T-1} \mathbb{E} \left[\left\| \nabla f(\mathbf{x}^{(t)}) \right\|^2 \right] \le \mathcal{O} \left(\underbrace{\frac{L(f(\mathbf{x}_0) - f^*)}{T}}_{T} + \frac{\sigma}{\sqrt{B}} \sqrt{\frac{L(f(\mathbf{x}_0) - f^*)}{T}} \right)$ • T: number of iterations

Assumption 1

- The function $f(\mathbf{x})$ we are minimizing is lower bounded from below by $f^* := f(\mathbf{x}^*)$, and each f_i is *L*-smooth satisfying $\|\nabla f_i(\mathbf{y}) \nabla f_i(\mathbf{x})\| \le L \|\mathbf{y} \mathbf{x}\|$
- The stochastic gradients satisfy $\mathbb{E} \left[\nabla f_i(\mathbf{x}) \right] = \nabla f(\mathbf{x})$ and $\mathbb{E} \left\| \nabla f_i(\mathbf{x}) \nabla f(\mathbf{x}) \right\|^2 \le \sigma^2$.

Theorem 1 (Convergence rate of mini-batch SGD for non-convex functions)

- L-smoothness $\frac{1}{T}\sum_{t=0}^{T-1} \mathbb{E}\left[\left\|\nabla f(\mathbf{x}^{(t)})\right\|^{2}\right] \leq \mathcal{O}\left(\frac{L\left(f(\mathbf{x}_{0}) - f^{\star}\right)}{T} + \frac{\sigma}{\sqrt{B}}\sqrt{\frac{L\left(f(\mathbf{x}_{0}) - f^{\star}\right)}{T}}\right)$ • T: number of iterations
- σ: stochastic gradient variance –

Assumption 1

- The function $f(\mathbf{x})$ we are minimizing is lower bounded from below by $f^* := f(\mathbf{x}^*)$, and each f_i is *L*-smooth satisfying $\|\nabla f_i(\mathbf{y}) \nabla f_i(\mathbf{x})\| \le L \|\mathbf{y} \mathbf{x}\|$
- The stochastic gradients satisfy $\mathbb{E} \left[\nabla f_i(\mathbf{x}) \right] = \nabla f(\mathbf{x})$ and $\mathbb{E} \left\| \nabla f_i(\mathbf{x}) \nabla f(\mathbf{x}) \right\|^2 \le \sigma^2$.

Theorem 1 (Convergence rate of mini-batch SGD for non-convex functions)

• L-smoothness $\frac{1}{T}\sum_{t=0}^{T-1} \mathbb{E}\left[\left\|\nabla f(\mathbf{x}^{(t)})\right\|^{2}\right] \leq \mathcal{O}\left(\begin{array}{c} L\left(f(\mathbf{x}_{0}) - f^{\star}\right) \\ T \end{array} + \frac{\sigma}{\sqrt{B}}\sqrt{\frac{L\left(f(\mathbf{x}_{0}) - f^{\star}\right)}{T}}\right)$ • T: number of iterations • σ : stochastic gradient variance • B: mini-batch size of \mathcal{B}

Theorem 1 (Convergence rate of mini-batch SGD for non-convex functions)

• When iterations
$$T \to \infty$$
, it holds that $\mathbb{E}\left[\left\|\nabla f(\mathbf{x}^{(t)})\right\|^2\right] \to 0$

Theorem 1 (Convergence rate of mini-batch SGD for non-convex functions)

• When iterations $T \to \infty$, it holds that $\mathbb{E}\left[\left\|\nabla f(\mathbf{x}^{(t)})\right\|^2\right] \to 0$

• $\mathbb{E}\left[\left\|\nabla f(\mathbf{x}^{(t)})\right\|^2\right] \to 0$ implies the sequence converges to a stationary solution

1 Stochastic Gradient Descent (SGD) and Mini-batch SGD

2 Accelerated and Stabilized Optimization Methods

3 Advanced Optimization Methods

Introduction to Distributed Deep Learning

(a) ResNet w/o skip connections.

(b) ResNet w/ skip connections.

Figure: The surfaces of ResNet-56 w/ and w/o skip connections [12].

^[12] Li et al. Visualizing the Loss Landscape of Neural Nets. NeurIPS 2018.

Challenging optimization loss landscape!

Figures borrowed from https://cs182sp21.github.io/static/slides/lec-4.pdf

- Challenges # 1: loss function has high condition number.
 - \rightarrow very slow progress along shallow dimension, jitter along steep direction.

Visualizations based on Gabriel Goh's distill.pub article: https://distill.pub/2017/momentum/

- Challenges # 1: loss function has high condition number.
 → very slow progress along shallow dimension, jitter along steep direction.
- Challenges # 2 & more: plateaus & saddle points.

Visualizations based on Gabriel Goh's distill.pub article: https://distill.pub/2017/momentum/

- Challenges # 1: loss function has high condition number.
 - \rightarrow very slow progress along shallow dimension, jitter along steep direction.
- Challenges # 2 & more: plateaus & saddle points.
 - \rightarrow cannot just choose tiny learning rates to prevent oscillation!

Visualizations based on Gabriel Goh's distill.pub article: https://distill.pub/2017/momentum/

- Challenges # 1: loss function has high condition number.
 - \rightarrow very slow progress along shallow dimension, jitter along steep direction.
- Challenges # 2 & more: plateaus & saddle points.
 - \rightarrow cannot just choose tiny learning rates to prevent oscillation!
 - \rightarrow need learning rates to be large enough not to get stuck in a plateau.

Visualizations based on Gabriel Goh's distill.pub article: https://distill.pub/2017/momentum/

- Challenges # 1: loss function has high condition number.
 - \rightarrow very slow progress along shallow dimension, jitter along steep direction.
- Challenges # 2 & more: plateaus & saddle points.
 - \rightarrow cannot just choose tiny learning rates to prevent oscillation!
 - \rightarrow need learning rates to be large enough not to get stuck in a plateau.
 - \rightarrow saddle points have very small gradients: but much more common in high dimension.

Visualizations based on Gabriel Goh's distill.pub article: https://distill.pub/2017/momentum/

Improvement directions: leveraging the curvature information

Can we find a better descent direction in the loss landscape? Yes! **By leveraging the curvature information** through Newton's method.
Improvement directions: leveraging the curvature information

Can we find a better descent direction in the loss landscape? Yes! **By leveraging the curvature information** through Newton's method.

Taylor expansion:

$$f(x) \approx f(x_0) + f'(x_0)(x - x_0) + \frac{1}{2}f''(x_0)(x - x_0)^2$$
 (7)

Improvement directions: leveraging the curvature information

Can we find a better descent direction in the loss landscape? Yes! **By leveraging the curvature information** through Newton's method.

Taylor expansion:

$$f(x) \approx f(x_0) + f'(x_0)(x - x_0) + \frac{1}{2}f''(x_0)(x - x_0)^2$$
(7)

Multivariate case:

$$f(\mathbf{x}) \approx f(\mathbf{x}_0) + \underbrace{\nabla_{\mathbf{x}} f(\mathbf{x}_0)}_{\text{gradient}} (\mathbf{x} - \mathbf{x}_0) + \frac{1}{2} (\mathbf{x} - \mathbf{x}_0)^\top \underbrace{\nabla_{\mathbf{x}}^2 f(\mathbf{x}_0)}_{\text{Hessian}} (\mathbf{x} - \mathbf{x}_0)$$
(8)

Improvement directions: leveraging the curvature information

Can we find a better descent direction in the loss landscape? Yes! **By leveraging the curvature information** through Newton's method.

Taylor expansion:

$$f(x) \approx f(x_0) + f'(x_0)(x - x_0) + \frac{1}{2}f''(x_0)(x - x_0)^2$$
(7)

Multivariate case:

$$f(\mathbf{x}) \approx f(\mathbf{x}_0) + \underbrace{\nabla_{\mathbf{x}} f(\mathbf{x}_0)}_{\text{gradient}} (\mathbf{x} - \mathbf{x}_0) + \frac{1}{2} (\mathbf{x} - \mathbf{x}_0)^\top \underbrace{\nabla_{\mathbf{x}}^2 f(\mathbf{x}_0)}_{\text{Hessian}} (\mathbf{x} - \mathbf{x}_0)$$
(8)

Solution (can optimize this analytically!):

$$\mathbf{x}^{\star} \leftarrow \mathbf{x}_0 - \left(\nabla_{\mathbf{x}}^2 f(\mathbf{x}_0)\right)^{-1} \nabla_{\mathbf{x}} f(\mathbf{x}_0) \tag{9}$$

Improvement directions: trade-offs and approximations

Q: Why is Newton's method not a viable way to improve neural network optimization?

¹ if using naive approach, though fancy methods can be much faster if they avoid forming the Hessian explicitly.

Improvement directions: trade-offs and approximations

Q: Why is Newton's method not a viable way to improve neural network optimization?

GD (w/o Hessian): $\mathcal{O}(N)$

V.S.

GD (w/ Hessian)¹: $\mathcal{O}(N^3)$

¹ if using naive approach, though fancy methods can be much faster if they avoid forming the Hessian explicitly.

Improvement directions: trade-offs and approximations

Q: Why is Newton's method not a viable way to improve neural network optimization?

GD (w/o Hessian): $\mathcal{O}(N)$

V.S.

GD (w/ Hessian)¹: $\mathcal{O}(N^3)$

We would prefer methods that don't require second derivatives, but somehow "stabilize" / "accelerate" gradient descent instead.

¹ if using naive approach, though fancy methods can be much faster if they avoid forming the Hessian explicitly.

w/o momentum

w/o momentum

w/ momentum

w/o momentum

w/ momentum

w/o momentum

w/ momentum

Intuition: averaging together successive gradients yield a much better direction!

• if successive gradient step point in different directions

w/o momentum

w/ momentum

Intuition: averaging together successive gradients yield a much better direction!

if successive gradient step point in different directions
 → we should cancel off the directions that disagree

w/o momentum

w/ momentum

- if successive gradient step point in different directions
 → we should cancel off the directions that disagree
- if successive gradient step point in similar directions

w/o momentum

w/ momentum

- if successive gradient step point in different directions
 → we should cancel off the directions that disagree
- if successive gradient step point in similar directions
 → we should go faster in that direction

w/o momentum

w/ momentum

- if successive gradient step point in different directions
 → we should cancel off the directions that disagree
- if successive gradient step point in similar directions
 - \rightarrow we should go faster in that direction

$$\mathbf{m}_{t} = \beta \mathbf{m}_{t-1} + \nabla F(\mathbf{x}_{t}, \boldsymbol{\xi}_{t}), \mathbf{x}_{t+1} = \mathbf{x}_{t} - \eta \mathbf{m}_{t}$$
(SGD w/ momentum)
$$\mathbf{x}_{t+1} = \mathbf{x}_{0} - \eta \sum_{i=1}^{t} \nabla F(\mathbf{x}_{i}, \boldsymbol{\xi}_{i})$$
(Unroll SGD w/o momentum)

Methods that manipulate gradient scale

Intuition behind $\nabla F(\mathbf{x}_i, \boldsymbol{\xi}_i)$:

• sign:

Methods that manipulate gradient scale

Intuition behind $\nabla F(\mathbf{x}_i, \boldsymbol{\xi}_i)$:

- sign:
- magnitude:

- *sign*: the sign of the gradient tells us which way to go along each dimension;
- magnitude:

- *sign*: the sign of the gradient tells us which way to go along each dimension;
- magnitude: the magnitude is not so great, and could be even worse:

- *sign*: the sign of the gradient tells us which way to go along each dimension;
- magnitude: the magnitude is not so great, and could be even worse:

ightarrow overall magnitude of the gradient can change drastically during the optimization,

- *sign*: the sign of the gradient tells us which way to go along each dimension;
- magnitude: the magnitude is not so great, and could be even worse:

 \rightarrow overall magnitude of the gradient can change drastically during the optimization, making learning rates hard to tune.

- *sign*: the sign of the gradient tells us which way to go along each dimension;
- magnitude: the magnitude is not so great, and could be even worse:

 \rightarrow overall magnitude of the gradient can change drastically during the optimization, making learning rates hard to tune.

Idea: normalize out the magnitude of the gradient along each dimension.

AdaGrad [2] (estimate per-dimension cumulative magnitude):

$$\mathbf{v}_t = \mathbf{v}_{t-1} + (\nabla F(\mathbf{x}_t, \boldsymbol{\xi}_t))^2$$
$$\mathbf{x}_{t+1} = \mathbf{x}_t - \eta \frac{\nabla F(\mathbf{x}_t, \boldsymbol{\xi}_t)}{\sqrt{\mathbf{v}_t}}$$

(roughly the squared length of each dimension)

(each dimension is divided by its magnitude)

13/50

RMSProp. https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf.

AdaGrad [2] (estimate per-dimension cumulative magnitude):

$$\mathbf{v}_t = \mathbf{v}_{t-1} + (\nabla F(\mathbf{x}_t, \boldsymbol{\xi}_t))^2$$
$$\mathbf{x}_{t+1} = \mathbf{x}_t - \eta \frac{\nabla F(\mathbf{x}_t, \boldsymbol{\xi}_t)}{\sqrt{\mathbf{v}_t}}$$

(roughly the squared length of each dimension)

(each dimension is divided by its magnitude)

13/50

RMSProp (estimate per-dimension magnitude):

 $\begin{aligned} \mathbf{v}_t &= \beta \mathbf{v}_{t-1} + (1-\beta) \left(\nabla F(\mathbf{x}_t, \boldsymbol{\xi}_t) \right)^2 & \text{(roughly the squared length of each dimension)} \\ \mathbf{x}_{t+1} &= \mathbf{x}_t - \eta \frac{\nabla F(\mathbf{x}_t, \boldsymbol{\xi}_t)}{\sqrt{\mathbf{v}_t}} & \text{(each dimension is divided by its magnitude)} \end{aligned}$

RMSProp. https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf.

AdaGrad [2] (estimate per-dimension cumulative magnitude):

$$\mathbf{v}_t = \mathbf{v}_{t-1} + (\nabla F(\mathbf{x}_t, \boldsymbol{\xi}_t))^2$$
$$\mathbf{x}_{t+1} = \mathbf{x}_t - \eta \frac{\nabla F(\mathbf{x}_t, \boldsymbol{\xi}_t)}{\sqrt{\mathbf{v}_t}}$$

(roughly the squared length of each dimension)

(each dimension is divided by its magnitude)

RMSProp (estimate per-dimension magnitude):

 $\begin{aligned} \mathbf{v}_t &= \beta \mathbf{v}_{t-1} + (1-\beta) \left(\nabla F(\mathbf{x}_t, \boldsymbol{\xi}_t) \right)^2 & \text{(roughly the squared length of each dimension)} \\ \mathbf{x}_{t+1} &= \mathbf{x}_t - \eta \frac{\nabla F(\mathbf{x}_t, \boldsymbol{\xi}_t)}{\sqrt{\mathbf{v}_t}} & \text{(each dimension is divided by its magnitude)} \end{aligned}$

Remarks:

RMSProp. https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf.

AdaGrad [2] (estimate per-dimension cumulative magnitude):

$$\mathbf{v}_t = \mathbf{v}_{t-1} + (\nabla F(\mathbf{x}_t, \boldsymbol{\xi}_t))^2$$
$$\mathbf{x}_{t+1} = \mathbf{x}_t - \eta \frac{\nabla F(\mathbf{x}_t, \boldsymbol{\xi}_t)}{\sqrt{\mathbf{v}_t}}$$

(roughly the squared length of each dimension)

(each dimension is divided by its magnitude)

RMSProp (estimate per-dimension magnitude):

 $\begin{aligned} \mathbf{v}_t &= \beta \mathbf{v}_{t-1} + (1-\beta) \left(\nabla F(\mathbf{x}_t, \boldsymbol{\xi}_t) \right)^2 & \text{(roughly the squared length of each dimension)} \\ \mathbf{x}_{t+1} &= \mathbf{x}_t - \eta \frac{\nabla F(\mathbf{x}_t, \boldsymbol{\xi}_t)}{\sqrt{\mathbf{v}_t}} & \text{(each dimension is divided by its magnitude)} \end{aligned}$

Remarks:

• AdaGrad has some appealing guarantees for convex problems.

RMSProp. https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf.

AdaGrad [2] (estimate per-dimension cumulative magnitude):

$$\mathbf{v}_t = \mathbf{v}_{t-1} + (\nabla F(\mathbf{x}_t, \boldsymbol{\xi}_t))^2$$
$$\mathbf{x}_{t+1} = \mathbf{x}_t - \eta \frac{\nabla F(\mathbf{x}_t, \boldsymbol{\xi}_t)}{\sqrt{\mathbf{v}_t}}$$

(roughly the squared length of each dimension)

(each dimension is divided by its magnitude)

RMSProp (estimate per-dimension magnitude):

 $\mathbf{v}_{t} = \beta \mathbf{v}_{t-1} + (1 - \beta) \left(\nabla F(\mathbf{x}_{t}, \boldsymbol{\xi}_{t}) \right)^{2}$ (roughly the squared length of each dimension) $\mathbf{x}_{t+1} = \mathbf{x}_{t} - \eta \frac{\nabla F(\mathbf{x}_{t}, \boldsymbol{\xi}_{t})}{\sqrt{\mathbf{v}_{t}}}$ (each dimension is divided by its magnitude)

Remarks:

- AdaGrad has some appealing guarantees for convex problems.
 - \rightarrow AdaGrad originally proposed to benefit from sparse data.

RMSProp. https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf.

^[2] Duchi et al. Adaptive subgradient methods for online learning and stochastic optimization. COLT 2010.

AdaGrad [2] (estimate per-dimension cumulative magnitude):

$$\mathbf{v}_t = \mathbf{v}_{t-1} + (\nabla F(\mathbf{x}_t, \boldsymbol{\xi}_t))^2$$
$$\mathbf{x}_{t+1} = \mathbf{x}_t - \eta \frac{\nabla F(\mathbf{x}_t, \boldsymbol{\xi}_t)}{\sqrt{\mathbf{v}_t}}$$

(roughly the squared length of each dimension)

(each dimension is divided by its magnitude)

RMSProp (estimate per-dimension magnitude):

 $\mathbf{v}_{t} = \beta \mathbf{v}_{t-1} + (1 - \beta) \left(\nabla F(\mathbf{x}_{t}, \boldsymbol{\xi}_{t}) \right)^{2}$ (roughly the squared length of each dimension) $\mathbf{x}_{t+1} = \mathbf{x}_{t} - \eta \frac{\nabla F(\mathbf{x}_{t}, \boldsymbol{\xi}_{t})}{\sqrt{\mathbf{v}_{t}}}$ (each dimension is divided by its magnitude)

Remarks:

- AdaGrad has some appealing guarantees for convex problems.
 - ightarrow AdaGrad originally proposed to benefit from sparse data.
 - \rightarrow Learning rate effectively "decreases" over time: good for convex (bad for non-convex).

RMSProp. https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf.

^[2] Duchi et al. Adaptive subgradient methods for online learning and stochastic optimization. COLT 2010.

AdaGrad [2] (estimate per-dimension cumulative magnitude):

$$\mathbf{v}_t = \mathbf{v}_{t-1} + (\nabla F(\mathbf{x}_t, \boldsymbol{\xi}_t))^2$$
$$\mathbf{x}_{t+1} = \mathbf{x}_t - \eta \frac{\nabla F(\mathbf{x}_t, \boldsymbol{\xi}_t)}{\sqrt{\mathbf{v}_t}}$$

(roughly the squared length of each dimension)

(each dimension is divided by its magnitude)

RMSProp (estimate per-dimension magnitude):

 $\mathbf{v}_{t} = \beta \mathbf{v}_{t-1} + (1 - \beta) \left(\nabla F(\mathbf{x}_{t}, \boldsymbol{\xi}_{t}) \right)^{2}$ (roughly the squared length of each dimension) $\mathbf{x}_{t+1} = \mathbf{x}_{t} - \eta \frac{\nabla F(\mathbf{x}_{t}, \boldsymbol{\xi}_{t})}{\sqrt{\mathbf{v}_{t}}}$ (each dimension is divided by its magnitude)

Remarks:

- AdaGrad has some appealing guarantees for convex problems.
 - \rightarrow AdaGrad originally proposed to benefit from sparse data.
 - \rightarrow Learning rate effectively "decreases" over time: good for convex (bad for non-convex).
- RMSProp tends to be much better for deep learning (and most non-convex problems)

RMSProp. https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf.

^[2] Duchi et al. Adaptive subgradient methods for online learning and stochastic optimization. COLT 2010.

Idea:

[7] Kingma et al. Adam: A method for stochastic optimization. ICLR 2015 (Google Scholar 12w+)

Idea:

• Maintain exponential moving averages of gradient and its square

[7] Kingma et al. Adam: A method for stochastic optimization. ICLR 2015 (Google Scholar 12w+)

Idea:

- · Maintain exponential moving averages of gradient and its square
- Update proportional to $\frac{\text{average gradient}}{\sqrt{\text{average squared gradient}}}$

^[7] Kingma et al. Adam: A method for stochastic optimization. ICLR 2015 (Google Scholar 12w+)

Idea:

- · Maintain exponential moving averages of gradient and its square
- Update proportional to $\frac{\text{average gradient}}{\sqrt{\text{average squared gradient}}}$

$$\begin{split} \mathbf{m}_{t} &= \beta_{1}\mathbf{m}_{t-1} + (1 - \beta_{1})\nabla F(\mathbf{x}_{t}, \boldsymbol{\xi}_{t}) & (\text{first moment estimate}) \\ \mathbf{v}_{t} &= \beta_{2}\mathbf{v}_{t-1} + (1 - \beta_{2})\left(\nabla F(\mathbf{x}_{t}, \boldsymbol{\xi}_{t})\right)^{2} & (\text{second moment estimate}) \\ \mathbf{x}_{t+1} &= \mathbf{x}_{t} - \eta \frac{\mathbf{m}_{t}}{\sqrt{\mathbf{v}_{t} + \epsilon}} = \mathbf{x}_{t} - \underbrace{\eta}_{\underbrace{\sqrt{\mathbf{v}_{t} + \epsilon}}_{\text{element-wise stepsize}}} \mathbf{m}_{t} & (\text{update step}) \end{split}$$

^[7] Kingma et al. Adam: A method for stochastic optimization. ICLR 2015 (Google Scholar 12w+)

Idea:

- · Maintain exponential moving averages of gradient and its square
- Update proportional to $\frac{\text{average gradient}}{\sqrt{\text{average squared gradient}}}$

$$\begin{split} \mathbf{m}_{t} &= \beta_{1}\mathbf{m}_{t-1} + (1 - \beta_{1})\nabla F(\mathbf{x}_{t}, \boldsymbol{\xi}_{t}) & (\text{first moment estimate}) \\ \mathbf{v}_{t} &= \beta_{2}\mathbf{v}_{t-1} + (1 - \beta_{2})\left(\nabla F(\mathbf{x}_{t}, \boldsymbol{\xi}_{t})\right)^{2} & (\text{second moment estimate}) \\ \mathbf{x}_{t+1} &= \mathbf{x}_{t} - \eta \frac{\mathbf{m}_{t}}{\sqrt{\mathbf{v}_{t} + \epsilon}} = \mathbf{x}_{t} - \underbrace{\eta}_{\text{element-wise stepsize}} \mathbf{m}_{t} & (\text{update step}) \end{split}$$

where compared to RMSProp, Adam

^[7] Kingma et al. Adam: A method for stochastic optimization. ICLR 2015 (Google Scholar 12w+)

Idea:

- · Maintain exponential moving averages of gradient and its square
- Update proportional to $\frac{\text{average gradient}}{\sqrt{\text{average squared gradient}}}$

$$\begin{split} \mathbf{m}_{t} &= \beta_{1}\mathbf{m}_{t-1} + (1 - \beta_{1})\nabla F(\mathbf{x}_{t}, \boldsymbol{\xi}_{t}) & (\text{first moment estimate}) \\ \mathbf{v}_{t} &= \beta_{2}\mathbf{v}_{t-1} + (1 - \beta_{2})\left(\nabla F(\mathbf{x}_{t}, \boldsymbol{\xi}_{t})\right)^{2} & (\text{second moment estimate}) \\ \mathbf{x}_{t+1} &= \mathbf{x}_{t} - \eta \frac{\mathbf{m}_{t}}{\sqrt{\mathbf{v}_{t} + \epsilon}} = \mathbf{x}_{t} - \underbrace{\eta}_{\underbrace{\sqrt{\mathbf{v}_{t} + \epsilon}}_{\text{element-wise stepsize}}} \mathbf{m}_{t} & (\text{update step}) \end{split}$$

where compared to RMSProp, Adam

• replaces
$$\frac{\eta}{\sqrt{\mathbf{v}_t + \epsilon}} \nabla F(\mathbf{x}_t, \boldsymbol{\xi}_t)$$
 by $\frac{\eta}{\sqrt{\mathbf{v}_t + \epsilon}} \mathbf{m}_t$.

^[7] Kingma et al. Adam: A method for stochastic optimization. ICLR 2015 (Google Scholar 12w+)

Idea:

- · Maintain exponential moving averages of gradient and its square
- Update proportional to $\frac{\text{average gradient}}{\sqrt{\text{average squared gradient}}}$

$$\begin{split} \mathbf{m}_{t} &= \beta_{1}\mathbf{m}_{t-1} + (1 - \beta_{1})\nabla F(\mathbf{x}_{t}, \boldsymbol{\xi}_{t}) & (\text{first moment estimate}) \\ \mathbf{v}_{t} &= \beta_{2}\mathbf{v}_{t-1} + (1 - \beta_{2})\left(\nabla F(\mathbf{x}_{t}, \boldsymbol{\xi}_{t})\right)^{2} & (\text{second moment estimate}) \\ \mathbf{x}_{t+1} &= \mathbf{x}_{t} - \eta \frac{\mathbf{m}_{t}}{\sqrt{\mathbf{v}_{t} + \epsilon}} = \mathbf{x}_{t} - \underbrace{\frac{\eta}{\sqrt{\mathbf{v}_{t} + \epsilon}}}_{\text{element-wise stepsize}} \mathbf{m}_{t} & (\text{update step}) \end{split}$$

where compared to RMSProp, Adam

- replaces $\frac{\eta}{\sqrt{\mathbf{v}_t + \epsilon}} \nabla F(\mathbf{x}_t, \boldsymbol{\xi}_t)$ by $\frac{\eta}{\sqrt{\mathbf{v}_t + \epsilon}} \mathbf{m}_t$.
- adds bias correction (omitted in the expression above): it avoids large stepsizes in early stages of run (especially when β_2 is close to 1).

^[7] Kingma et al. Adam: A method for stochastic optimization. ICLR 2015 (Google Scholar 12w+)

Many learning problems optimize the loss with L_2 norm penalty:

$$\tilde{f}(\mathbf{x}) = f(\mathbf{x}) + \lambda \|\mathbf{x}\|_2^2 , \qquad (10)$$

Many learning problems optimize the loss with L_2 norm penalty:

$$\tilde{f}(\mathbf{x}) = f(\mathbf{x}) + \lambda \|\mathbf{x}\|_2^2 , \qquad (10)$$

where it is sometimes called "weight decay" in SGD, since its gradient decays weight:

$$\mathbf{x} - \eta \nabla_{\mathbf{x}} \left(f(\mathbf{x}) + \lambda \| \mathbf{x} \|_{2}^{2} \right) \qquad \underset{\nabla_{\mathbf{x}} \| \mathbf{x} \|_{2}^{2} = 2\mathbf{x}}{\longleftrightarrow} \qquad (1 - 2\eta\lambda)\mathbf{x} - \eta \nabla_{\mathbf{x}} f(\mathbf{x}) \qquad (11)$$

On the discrepancy between L₂ regularization and weight decay:

[16] Loshchilov et al. Decoupled weight decay regularization. ICLR 2018 (Google Scholar 4800+)

On the discrepancy between L₂ regularization and weight decay:

• L₂ regularization and weight decay are not identical (for momentum/adaptive SGD).

^[16] Loshchilov et al. Decoupled weight decay regularization. ICLR 2018 (Google Scholar 4800+)

On the discrepancy between L_2 regularization and weight decay:

- L₂ regularization and weight decay are not identical (for momentum/adaptive SGD).
- *L*₂ regularization is not effective in Adam.

^[16] Loshchilov et al. Decoupled weight decay regularization. ICLR 2018 (Google Scholar 4800+)

On the discrepancy between L₂ regularization and weight decay:

- L₂ regularization and weight decay are not identical (for momentum/adaptive SGD).
- *L*₂ regularization is not effective in Adam.
- Weight decay is equally effective in both SGD and Adam.

^[16] Loshchilov et al. Decoupled weight decay regularization. ICLR 2018 (Google Scholar 4800+)

On the discrepancy between L₂ regularization and weight decay:

- L₂ regularization and weight decay are not identical (for momentum/adaptive SGD).
- *L*₂ regularization is not effective in Adam.
- Weight decay is equally effective in both SGD and Adam.

Decoupled SGD with momentum: (same trick applies to Adam)

$$\mathbf{m}_{t+1} = \beta \mathbf{m}_t + (1 - \beta) \left(\nabla F(\mathbf{x}_t, \boldsymbol{\xi}_t) + \lambda \mathbf{x}_t \\ \text{gradient of loss with } L_2 \text{ penalty} \right)$$
(10)
$$\mathbf{x}_{t+1} = \mathbf{x}_t - \mathbf{m}_t - \frac{2\eta \lambda \mathbf{x}_t}{\text{weight decay}}$$
(11)

^[16] Loshchilov et al. Decoupled weight decay regularization. ICLR 2018 (Google Scholar 4800+)

On the discrepancy between L₂ regularization and weight decay:

- L₂ regularization and weight decay are not identical (for momentum/adaptive SGD).
- *L*₂ regularization is not effective in Adam.
- Weight decay is equally effective in both SGD and Adam.

Decoupled SGD with momentum: (same trick applies to Adam)

$$\mathbf{m}_{t+1} = \beta \mathbf{m}_t + (1 - \beta) \left(\nabla F(\mathbf{x}_t, \boldsymbol{\xi}_t) + \lambda \mathbf{x}_t \\ \text{gradient of loss with } L_2 \text{ penalty} \right)$$
(10)
$$\mathbf{x}_{t+1} = \mathbf{x}_t - \mathbf{m}_t - \frac{2\eta \lambda \mathbf{x}_t}{\text{weight decay}}$$
(11)

AdamW is widely used in training STOA NNs from scratch or fine-tuning on downstream tasks.

^[16] Loshchilov et al. Decoupled weight decay regularization. ICLR 2018 (Google Scholar 4800+)

1 Stochastic Gradient Descent (SGD) and Mini-batch SGD

2 Accelerated and Stabilized Optimization Methods

3 Advanced Optimization Methods

- Lookahead
- Sharpness-aware Minimization

Introduction to Distributed Deep Learning

Table of Contents

1 Stochastic Gradient Descent (SGD) and Mini-batch SGD

2 Accelerated and Stabilized Optimization Methods

Advanced Optimization Methods Lookahead

Sharpness-aware Minimization

Introduction to Distributed Deep Learning

- Preliminary for Distributed Optimization
- Federated Learning
- Summary

Lookahead Optimizer: *k* steps forward, 1 step back

Different from the ideas e.g.,

Different from the ideas e.g.,

• Adaptive element-wise learning rate, e.g., AdaGrad and Adam

Different from the ideas e.g.,

- Adaptive element-wise learning rate, e.g., AdaGrad and Adam
- Accelerated optimization, e.g., Heavy-ball momentum and Nesterov momentum.

Different from the ideas e.g.,

- Adaptive element-wise learning rate, e.g., AdaGrad and Adam
- Accelerated optimization, e.g., Heavy-ball momentum and Nesterov momentum.

Lookahead Optimizer: k steps forward, 1 step back

CIFAR-100 accuracy surface with Lookahead interpolation

A natural way to explore and exploit the landscape!

Algorithm 1: SGD

Input :Objective $F_{\mathcal{S}}(\theta)$, dataset \mathcal{S} , inner-loop optimizer \mathcal{A} , inner-loop step number k and learning rate $\{\{\eta_{\tau}^{(t)}\},$ outer-loop learning rate $\alpha \in (0, 1)$.

for
$$t = 1, 2, ..., T$$
 do

$$\begin{aligned} \mathbf{v}_{0}^{(t)} &= \boldsymbol{\theta}_{t-1}; & \text{Inner-loop optimization} \\ \mathbf{for } \tau &= 1, 2, ..., k \text{ do} \\ \mid \mathbf{v}_{\tau}^{(t)} &= \mathcal{A}(F_{\mathcal{S}}(\boldsymbol{\theta}), \mathbf{v}_{\tau-1}^{(t)}, \eta_{\tau-1}^{(t)}, \mathcal{S}) = \mathbf{v}_{\tau-1}^{(t)} - \eta_{\tau-1}^{(t)} \mathbf{g}_{\tau-1}^{(t)}, \\ \mathbf{end} \\ \boldsymbol{\theta}_{t} &= \mathbf{v}_{k}^{(t)} = (1-1)\boldsymbol{\theta}_{t-1} + 1 * \mathbf{v}_{k}^{(t)} (\alpha = 1) \\ \mathbf{end} \\ \text{Output :} \boldsymbol{\theta}_{\mathcal{A},\mathcal{S}} = \boldsymbol{\theta}_{T} \end{aligned}$$

Algorithm 2: LookaheadInput :Objective $F_{\mathcal{S}}(\theta)$, dataset \mathcal{S} , inner-loop optimizer \mathcal{A} ,
inner-loop step number k and learning rate $\{\{\eta_{\tau}^{(t)}\}\}$,
outer-loop learning rate $\alpha \in (0, 1)$.for t = 1, 2, ..., T do $v_{0}^{(t)} = \theta_{t-1}$:Inner-loop optimization
for $\tau = 1, 2, ..., k$ do $v_{0}^{(t)} = \theta_{t-1}$: $v_{0}^{(t)} = \theta_{t-1}$: $v_{0}^{(t)} = \theta_{t-1}$; $v_{0}^{(t)} = 0$; $v_{1}^{(t)} = 0$; $v_{2}^{(t)} = 0$; $v_{1}^{(t)} = 0$; $v_{2}^{(t)} = 0$;</t

^[25] Zhang et al. Lookahead optimizer: k steps forward, 1 step back. NeurIPS 2019.

Algorithm 1: SGD

Input :Objective $F_{\mathcal{S}}(\theta)$, dataset \mathcal{S} , inner-loop optimizer \mathcal{A} , inner-loop step number k and learning rate $\{\{\eta_{\tau}^{(t)}\}\}$, outer-loop learning rate $\alpha \in (0, 1)$.

Algorithm 2: Lookahead Input :Objective $F_{\mathcal{S}}(\theta)$, dataset \mathcal{S} , inner-loop optimizer \mathcal{A} , inner-loop step number k and learning rate $\{\{\eta_{\tau}^{(t)}\},$ outer-loop learning rate $\alpha \in (0, 1)$. for t = 1, 2, ..., T do $v_{0}^{(t)} = \theta_{t-1}$: Inner-loop optimization for $\tau = 1, 2, ..., k$ do $v_{\tau-1}^{(t)} = \mathcal{A}(F_{\mathcal{S}}(\theta), v_{\tau-1}^{(t)}, \eta_{\tau-1}^{(t)}, \mathcal{S}) = v_{\tau-1}^{(t)} - \eta_{\tau-1}^{(t)}g_{\tau-1}^{(t)}$ $\theta_{t} = (1 - \alpha)\theta_{t-1} + \alpha v_{k}^{(t)}$. end Output : $\theta_{\mathcal{A},\mathcal{S}} = \theta_{T}$

inner-loop optimization: k steps forward in SGD & LA

outer-loop optimization: 1 step back in LA, while no step back in SGD

^[25] Zhang et al. Lookahead optimizer: k steps forward, 1 step back. NeurIPS 2019.

Algorithm 1: SGD	Algorithm 2: Lookahead
Input :Objective $F_{\mathcal{S}}(\theta)$, dataset \mathcal{S} , inner-loop optimizer \mathcal{A} , inner-loop step number k and learning rate $\{\{\eta_{\tau}^{(t)}\},$ outer-loop learning rate $\alpha \in (0, 1)$.	Input :Objective $F_{\mathcal{S}}(\theta)$, dataset \mathcal{S} , inner-loop optimizer \mathcal{A} , inner-loop step number k and learning rate $\{\{\eta_{\tau}^{(t)}\},$ outer-loop learning rate $\alpha \in (0, 1)$.
for $t = 1, 2,, T$ do	for $t = 1, 2,, T$ do
$oldsymbol{v}_0^{(t)} = oldsymbol{ heta}_{t-1};$	$oldsymbol{v}_0^{(t)} = oldsymbol{ heta}_{t-1};$
for $\tau = 1, 2,, k$ do	for $\tau = 1, 2,, k$ do
$oldsymbol{v}^{(t)}_{ au} = \mathcal{A}(F_{\mathcal{S}}(oldsymbol{ heta}),oldsymbol{v}^{(t)}_{ au-1},\eta^{(t)}_{ au-1},\mathcal{S}) = oldsymbol{v}^{(t)}_{ au-1} - \eta^{(t)}_{ au-1}oldsymbol{g}^{(t)}_{ au-1}$	$m{v}_{ au}^{(t)} = \mathcal{A}(F_{\mathcal{S}}(m{ heta}),m{v}_{ au-1}^{(t)},\eta_{ au-1}^{(t)},\mathcal{S}) = m{v}_{ au-1}^{(t)} - \eta_{ au-1}^{(t)}m{g}_{ au-1}^{(t)}$
end	end
$oldsymbol{ heta}_t = oldsymbol{v}_k^{(t)} = (1-1)oldsymbol{ heta}_{t-1} + 1 * oldsymbol{v}_k^{(t)} \; (lpha = 1)$	$oldsymbol{ heta}_t = (1-lpha)oldsymbol{ heta}_{t-1} + lphaoldsymbol{v}_k^{(t)}.$
end $Output: \theta_{\mathcal{A},\mathcal{S}} = \theta_T$ outer-loop optimization	end outer-loop optimization Output: $\theta_{A,S} = \theta_T$

- inner-loop optimization: k steps forward in SGD & LA
- outer-loop optimization: 1 step back in LA, while no step back in SGD

^[25] Zhang et al. Lookahead optimizer: k steps forward, 1 step back. NeurIPS 2019.

Table of Contents

1 Stochastic Gradient Descent (SGD) and Mini-batch SGD

2 Accelerated and Stabilized Optimization Methods

3 Advanced Optimization Methods

- Lookahead
- Sharpness-aware Minimization
- Introduction to Distributed Deep Learning
 - Preliminary for Distributed Optimization
 - Federated Learning
 - Summary

In many cases,

In many cases, $\mathsf{DL} o \mathsf{minimizing} \ \mathsf{a} \ \mathsf{loss} \ \mathsf{function} \ \ell({\pmb{ heta}})$

In many cases,

 $DL \rightarrow minimizing a loss function \ell(\theta)$

In many cases,

 $DL \rightarrow minimizing a loss function \ell(\theta)$

Highly non-convex (many local minima)!

• Q) Which is better, θ_A or θ_B ?

In many cases,

 $DL \rightarrow minimizing a loss function \ell(\theta)$

- Q) Which is better, θ_A or θ_B ?
- A) We prefer θ_A to θ_B even though $\ell(\theta_A) > \ell(\theta_B)$

In many cases,

 $DL \rightarrow minimizing a loss function \ell(\theta)$

- Q) Which is better, θ_A or θ_B ?
- A) We prefer θ_A to θ_B even though $\ell(\theta_A) > \ell(\theta_B)$
 - Why? Because θ_A is more robust.

In many cases,

 $\mathsf{DL} \to \mathsf{minimizing} \ \mathsf{a} \ \mathsf{loss} \ \mathsf{function} \ \ell(\theta)$

- Q) Which is better, θ_A or θ_B ?
- A) We prefer θ_A to θ_B even though $\ell(\theta_A) > \ell(\theta_B)$
 - Why? Because θ_A is more robust.
 - Imagine some perturbation: $\theta_A \to \theta'_A, \theta_B \to \theta'_B \Rightarrow \ell(\theta'_A) \ll \ell(\theta'_B).$

But, how?

Sharpness-Aware Minimization (SAM)

Idea of SAM:

Define a robust loss $\ell^{R}(\theta)$ as worst-case loss within a neighborhood of θ .

^[3] Foret et al. Sharpness-aware Minimization for Efficiently Improving Generalization. ICLR 2021.

Sharpness-Aware Minimization (SAM)

Idea of SAM:

Define a robust loss $\ell^{R}(\theta)$ as worst-case loss within a neighborhood of θ .

^[3] Foret et al. Sharpness-aware Minimization for Efficiently Improving Generalization. ICLR 2021.

Intuition behind SAM

• Goal: Find the local minima θ that are generalizable to test samples

Intuition behind SAM

- Goal: Find the local minima θ that are generalizable to test samples
- Theorem (Flatness-based generalization bounds):

Intuition behind SAM

- Goal: Find the local minima θ that are generalizable to test samples
- Theorem (Flatness-based generalization bounds):

Theorem 2 With high probability over *S*, the flatness-based bound says:

$$\mathcal{L}_{\mathcal{D}}(\boldsymbol{\theta}) \leq \mathcal{L}_{\mathcal{S}}(\boldsymbol{\theta}) + \underbrace{\left[\max_{\|\boldsymbol{\epsilon}\|_{2} \leq \rho} \mathcal{L}_{\mathcal{S}}(\boldsymbol{\theta} + \boldsymbol{\epsilon}) - \mathcal{L}_{\mathcal{S}}(\boldsymbol{\theta})\right]}_{q \text{-transform}} + h(\|\boldsymbol{\theta}\|_{2}^{2}/\rho^{2}), \tag{16}$$

flatness measure

- Goal: Find the local minima θ that are generalizable to test samples
- Theorem (Flatness-based generalization bounds):

Theorem 2 With high probability over *S*, the flatness-based bound says:

$$\mathcal{L}_{\mathcal{D}}(\boldsymbol{\theta}) \leq \mathcal{L}_{\mathcal{S}}(\boldsymbol{\theta}) + \underbrace{\left[\max_{\|\boldsymbol{\epsilon}\|_{2} \leq \rho} \mathcal{L}_{\mathcal{S}}(\boldsymbol{\theta} + \boldsymbol{\epsilon}) - \mathcal{L}_{\mathcal{S}}(\boldsymbol{\theta})\right]}_{\text{flatness measure}} + h(\|\boldsymbol{\theta}\|_{2}^{2}/\rho^{2}), \tag{16}$$

where $h(\|\theta\|_2^2/\rho^2)$ is a strictly increasing function of θ . It decreases as the number of samples n = |S| increases.

Sharpness-Aware Minimization (SAM)

$$\mathcal{L}_{\mathcal{D}}(\boldsymbol{\theta}) \leq \mathcal{L}_{\mathcal{S}}(\boldsymbol{\theta}) + \underbrace{\left[\max_{\|\boldsymbol{\epsilon}\|_{2} \leq \rho} \mathcal{L}_{\mathcal{S}}(\boldsymbol{\theta} + \boldsymbol{\epsilon}) - \mathcal{L}_{\mathcal{S}}(\boldsymbol{\theta})\right]}_{\text{flatness measure}} + h(\|\boldsymbol{\theta}\|_{2}^{2}/\rho^{2})$$
(17)
$$= \max_{\|\boldsymbol{\epsilon}\|_{2} \leq \rho} \mathcal{L}_{\mathcal{S}}(\boldsymbol{\theta} + \boldsymbol{\epsilon}) + h(\|\boldsymbol{\theta}\|_{2}^{2}/\rho^{2})$$
(18)
The objective of SAM becomes:

$$\boldsymbol{\theta}^{\star} := \arg\min_{\boldsymbol{\theta}} \mathcal{L}_{\mathcal{D}}(\boldsymbol{\theta}) = \arg\min_{\boldsymbol{\theta}} \max_{\|\boldsymbol{\epsilon}\|_{2} \leq \rho} \mathcal{L}_{\mathcal{S}}(\boldsymbol{\theta} + \boldsymbol{\epsilon}) \,. \tag{17}$$

The objective of SAM becomes:

$$\boldsymbol{\theta}^{\star} := \arg\min_{\boldsymbol{\theta}} \mathcal{L}_{\mathcal{D}}(\boldsymbol{\theta}) = \arg\min_{\boldsymbol{\theta}} \max_{\|\boldsymbol{\epsilon}\|_{2} \leq \rho} \mathcal{L}_{\mathcal{S}}(\boldsymbol{\theta} + \boldsymbol{\epsilon}) \,. \tag{17}$$

• the optimal $\hat{\epsilon}$ is given by (linear approximation through first-order Taylor expansion)

The objective of SAM becomes:

$$\boldsymbol{\theta}^{\star} := \arg\min_{\boldsymbol{\theta}} \mathcal{L}_{\mathcal{D}}(\boldsymbol{\theta}) = \arg\min_{\boldsymbol{\theta}} \max_{\|\boldsymbol{\epsilon}\|_{2} \leq \rho} \mathcal{L}_{\mathcal{S}}(\boldsymbol{\theta} + \boldsymbol{\epsilon}) \,. \tag{17}$$

• the optimal $\hat{\epsilon}$ is given by (linear approximation through first-order Taylor expansion)

$$\hat{\boldsymbol{\epsilon}} = \operatorname*{arg\,max}_{\|\boldsymbol{\epsilon}\|_{p} \leq \rho} \boldsymbol{\epsilon}^{\top} \nabla_{\boldsymbol{\theta}} \mathcal{L}_{\mathcal{S}}(\boldsymbol{\theta}) = \rho \cdot \operatorname{sign}\left(\nabla_{\boldsymbol{\theta}} \mathcal{L}_{\mathcal{S}}(\boldsymbol{\theta})\right) \frac{\left|\nabla_{\boldsymbol{\theta}} \mathcal{L}_{\mathcal{S}}(\boldsymbol{\theta})\right|^{q-1}}{\left(\left\|\nabla_{\boldsymbol{\theta}} \mathcal{L}_{\mathcal{S}}(\boldsymbol{\theta})\right\|_{q}^{q}\right)^{1/p}},$$
(18)

The objective of SAM becomes:

$$\boldsymbol{\theta}^{\star} := \arg\min_{\boldsymbol{\theta}} \mathcal{L}_{\mathcal{D}}(\boldsymbol{\theta}) = \arg\min_{\boldsymbol{\theta}} \max_{\|\boldsymbol{\epsilon}\|_{2} \leq \rho} \mathcal{L}_{\mathcal{S}}(\boldsymbol{\theta} + \boldsymbol{\epsilon}) \,. \tag{17}$$

• the optimal $\hat{\epsilon}$ is given by (linear approximation through first-order Taylor expansion)

$$\hat{\boldsymbol{\epsilon}} = \operatorname*{arg\,max}_{\|\boldsymbol{\epsilon}\|_{p} \leq \rho} \boldsymbol{\epsilon}^{\top} \nabla_{\boldsymbol{\theta}} \mathcal{L}_{\mathcal{S}}(\boldsymbol{\theta}) = \rho \cdot \operatorname{sign}\left(\nabla_{\boldsymbol{\theta}} \mathcal{L}_{\mathcal{S}}(\boldsymbol{\theta})\right) \frac{\left|\nabla_{\boldsymbol{\theta}} \mathcal{L}_{\mathcal{S}}(\boldsymbol{\theta})\right|^{q-1}}{\left(\left\|\nabla_{\boldsymbol{\theta}} \mathcal{L}_{\mathcal{S}}(\boldsymbol{\theta})\right\|_{q}^{q}\right)^{1/p}},$$
(18)

where 1/p + 1/q = 1

The objective of SAM becomes:

$$\boldsymbol{\theta}^{\star} := \arg\min_{\boldsymbol{\theta}} \mathcal{L}_{\mathcal{D}}(\boldsymbol{\theta}) = \arg\min_{\boldsymbol{\theta}} \max_{\|\boldsymbol{\epsilon}\|_{2} \leq \rho} \mathcal{L}_{\mathcal{S}}(\boldsymbol{\theta} + \boldsymbol{\epsilon}) \,. \tag{17}$$

• the optimal $\hat{\epsilon}$ is given by (linear approximation through first-order Taylor expansion)

$$\hat{\boldsymbol{\epsilon}} = \operatorname*{arg\,max}_{\|\boldsymbol{\epsilon}\|_{p} \leq \rho} \boldsymbol{\epsilon}^{\top} \nabla_{\boldsymbol{\theta}} \mathcal{L}_{\mathcal{S}}(\boldsymbol{\theta}) = \rho \cdot \operatorname{sign}\left(\nabla_{\boldsymbol{\theta}} \mathcal{L}_{\mathcal{S}}(\boldsymbol{\theta})\right) \frac{\left|\nabla_{\boldsymbol{\theta}} \mathcal{L}_{\mathcal{S}}(\boldsymbol{\theta})\right|^{q-1}}{\left(\left\|\nabla_{\boldsymbol{\theta}} \mathcal{L}_{\mathcal{S}}(\boldsymbol{\theta})\right\|_{q}^{q}\right)^{1/p}},$$
(18)

where 1/p + 1/q = 1 and the solution to a classical dual norm problem can solve this approximation.

The objective of SAM becomes:

$$\boldsymbol{\theta}^{\star} := \arg\min_{\boldsymbol{\theta}} \mathcal{L}_{\mathcal{D}}(\boldsymbol{\theta}) = \arg\min_{\boldsymbol{\theta}} \max_{\|\boldsymbol{\epsilon}\|_{2} \leq \rho} \mathcal{L}_{\mathcal{S}}(\boldsymbol{\theta} + \boldsymbol{\epsilon}) \,. \tag{17}$$

• the optimal $\hat{\epsilon}$ is given by (linear approximation through first-order Taylor expansion)

$$\hat{\boldsymbol{\epsilon}} = \operatorname*{arg\,max}_{\|\boldsymbol{\epsilon}\|_{p} \leq \rho} \boldsymbol{\epsilon}^{\top} \nabla_{\boldsymbol{\theta}} \mathcal{L}_{\mathcal{S}}(\boldsymbol{\theta}) = \rho \cdot \operatorname{sign}\left(\nabla_{\boldsymbol{\theta}} \mathcal{L}_{\mathcal{S}}(\boldsymbol{\theta})\right) \frac{\left|\nabla_{\boldsymbol{\theta}} \mathcal{L}_{\mathcal{S}}(\boldsymbol{\theta})\right|^{q-1}}{\left(\left\|\nabla_{\boldsymbol{\theta}} \mathcal{L}_{\mathcal{S}}(\boldsymbol{\theta})\right\|_{q}^{q}\right)^{1/p}},$$
(18)

where 1/p + 1/q = 1 and the solution to a classical dual norm problem can solve this approximation.

• substituting $\hat{\epsilon}$ gives a gradient estimator

$$\nabla_{\boldsymbol{\theta}} \mathcal{L}_{\mathcal{S}}^{\mathsf{SAM}}(\boldsymbol{\theta}) := \nabla_{\boldsymbol{\theta}} \mathcal{L}_{\mathcal{S}}(\boldsymbol{\theta} + \hat{\boldsymbol{\epsilon}}) \approx \nabla_{\boldsymbol{\theta}} \mathcal{L}_{\mathcal{S}}(\boldsymbol{\theta})|_{\boldsymbol{\theta} + \hat{\boldsymbol{\epsilon}}}$$
(19)

$$\nabla_{\boldsymbol{\theta}} \mathcal{L}_{\mathcal{S}}^{\mathsf{SAM}}(\boldsymbol{\theta}) \approx \nabla_{\boldsymbol{\theta}} \mathcal{L}_{\mathcal{S}}(\boldsymbol{\theta})|_{\boldsymbol{\theta} + \hat{\boldsymbol{\epsilon}}}$$
(20)

$$\nabla_{\boldsymbol{\theta}} \mathcal{L}_{\mathcal{S}}^{\mathsf{SAM}}(\boldsymbol{\theta}) \approx \nabla_{\boldsymbol{\theta}} \mathcal{L}_{\mathcal{S}}(\boldsymbol{\theta})|_{\boldsymbol{\theta} + \hat{\boldsymbol{\epsilon}}}$$
(20)

• Recall that SAM requires *2-step* gradient descent (thus, twice slow)

$$\nabla_{\boldsymbol{\theta}} \mathcal{L}_{\mathcal{S}}^{\mathsf{SAM}}(\boldsymbol{\theta}) \approx \nabla_{\boldsymbol{\theta}} \mathcal{L}_{\mathcal{S}}(\boldsymbol{\theta})|_{\boldsymbol{\theta} + \hat{\boldsymbol{\epsilon}}}$$
(20)

- Recall that SAM requires 2-step gradient descent (thus, twice slow)
 - 1st for computing $\hat{\boldsymbol{\epsilon}}$ using $\nabla_{\boldsymbol{\theta}} \mathcal{L}_{\mathcal{S}}(\boldsymbol{\theta})$

$$\nabla_{\boldsymbol{\theta}} \mathcal{L}_{\mathcal{S}}^{\mathsf{SAM}}(\boldsymbol{\theta}) \approx \nabla_{\boldsymbol{\theta}} \mathcal{L}_{\mathcal{S}}(\boldsymbol{\theta})|_{\boldsymbol{\theta} + \hat{\boldsymbol{\epsilon}}}$$
(20)

- Recall that SAM requires 2-step gradient descent (thus, twice slow)
 - 1st for computing $\hat{\boldsymbol{\epsilon}}$ using $\nabla_{\boldsymbol{\theta}} \mathcal{L}_{\mathcal{S}}(\boldsymbol{\theta})$
 - 2nd for computing $\nabla_{\theta} \mathcal{L}_{\mathcal{S}}(\theta)|_{\theta+\hat{\epsilon}}$

$$\nabla_{\boldsymbol{\theta}} \mathcal{L}_{\mathcal{S}}^{\mathsf{SAM}}(\boldsymbol{\theta}) \approx \nabla_{\boldsymbol{\theta}} \mathcal{L}_{\mathcal{S}}(\boldsymbol{\theta})|_{\boldsymbol{\theta} + \hat{\boldsymbol{\epsilon}}}$$
(20)

- Recall that SAM requires 2-step gradient descent (thus, twice slow)
 - 1st for computing $\hat{\epsilon}$ using $\nabla_{\theta} \mathcal{L}_{\mathcal{S}}(\theta)$
 - 2nd for computing $\nabla_{\theta} \mathcal{L}_{\mathcal{S}}(\theta)|_{\theta+\hat{\epsilon}}$
- Set p = 2-norm and neighborhood-size $\rho = 0.05$ as a default setup.

Verification of the flatness

(a) ERM.

(b) SAM.

Loss surface visualization.

Verification of the flatness

Hessian spectra.

Results (i.e., SAM > ERM)

• SAM consistently improves classification tasks, particularly with label noises

Model	Epoch	SA	М	Standard Training (No SAM)		
WOUEI		Top-1	Top-5	Top-1	Top-5	
ResNet-50	100	22.5 $_{\pm 0.1}$	$6.28_{\pm0.08}$	$22.9_{\pm 0.1}$	$6.62_{\pm 0.11}$	
	200	$21.4_{\pm 0.1}$	$5.82{\scriptstyle \pm 0.03}$	$22.3_{\pm 0.1}$	$6.37_{\pm0.04}$	
	400	20.9 $_{\pm 0.1}$	$5.51_{\pm0.03}$	$22.3_{\pm 0.1}$	$6.40_{\pm0.06}$	
ResNet-101	100	20.2 _{±0.1}	$5.12_{\pm 0.03}$	$21.2_{\pm 0.1}$	$5.66_{\pm0.05}$	
	200	$\textbf{19.4}_{\pm 0.1}$	$4.76_{\pm0.03}$	$20.9_{\pm0.1}$	$5.66_{\pm0.04}$	
	400	$19.0_{\pm < 0.01}$	$4.65{\scriptstyle \pm 0.05}$	$22.3_{\pm 0.1}$	$6.41{\scriptstyle \pm 0.06}$	
ResNet-152	100	$19.2_{\pm < 0.01}$	$4.69_{\pm0.04}$	$20.4_{\pm < 0.0}$	$5.39_{\pm 0.06}$	
	200	$18.5_{\pm 0.1}$	$4.37_{\pm0.03}$	$20.3_{\pm 0.2}$	$5.39_{\pm0.07}$	
	400	$18.4_{\pm < 0.01}$	$4.35_{\pm0.04}$	$20.9_{\pm < 0.0}$	$5.84_{\pm0.07}$	

Table: Test error rates for ResNets trained on ImageNet, with and without SAM.

Results on ViT (and MLP-Mixer)

Figure: Cross-entropy loss landscapes of ResNet-152, ViT-B/16, and Mixer-B/16. ViT and MLP-Mixer converge to sharper regions than ResNet when trained on ImageNet with the basic Inception-style preprocessing. SAM significantly smooths the landscapes.

Table: Number of parameters, Hessian dominate eigenvalue λ_{max} , training error at convergence L_{train} , average flatness $L_{train}^{\mathcal{N}}$, accuracy on ImageNet, and accuracy/robustness on ImageNet-C. ViT and MLP-Mixer suffer divergent κ and converge at sharp regions; SAM rescues that and leads to better generalization.

	ResNet-152	ResNet-152- SAM	ViT-B/16	ViT-B/16- SAM	Mixer-B/16	Mixer-B/16- SAM
#Params	60M		87M		59M	
Hessian λ_{max}	179.8	42.0	738.8	20.9	1644.4	22.5
L _{train}	0.86	0.90	0.65	0.82	0.45	0.97
$L_{train}^{\mathcal{N}}$ *	2.39	2.16	6.66	0.96	7.78	1.01
ImageNet (%) ImageNet-C (%)	78.5 50.0	79.3 52.2	74.6 46.6	79.9 56.5	66.4 33.8	77.4 48.8

1 Stochastic Gradient Descent (SGD) and Mini-batch SGD

- 2 Accelerated and Stabilized Optimization Methods
- 3 Advanced Optimization Methods

4 Introduction to Distributed Deep Learning

- Preliminary for Distributed Optimization
- Federated Learning
- Summary

Table of Contents

1 Stochastic Gradient Descent (SGD) and Mini-batch SGD

2 Accelerated and Stabilized Optimization Methods

3 Advanced Optimization Methods

- Lookahead
- Sharpness-aware Minimization

Introduction to Distributed Deep Learning

- Preliminary for Distributed Optimization
- Federated Learning
- Summary

Why Distributed Deep Learning Infrastructure Matters

Recall that

$$\frac{1}{T}\sum_{t=0}^{T-1} \mathbb{E}\left[\left\|\nabla f(\mathbf{x}^{(t)})\right\|^2\right] \leq \mathcal{O}\left(\frac{\sigma}{\sqrt{BT}}\right)$$

To achieve an ϵ -accurate solution, i.e., $\frac{1}{T} \sum_{t=0}^{T} \mathbb{E} \left[\left\| \nabla f(\mathbf{x}^{(t)}) \right\|^2 \right] \le \epsilon$, it requires $\mathcal{O}\left(\frac{\sigma^2}{B\epsilon^2} \right)$.

Mini-batch SGD

Why Distributed Deep Learning Infrastructure Matters

Recall that

$$\frac{1}{T}\sum_{t=0}^{T-1}\mathbb{E}\left[\left\|\nabla f(\mathbf{x}^{(t)})\right\|^{2}\right] \leq \mathcal{O}\left(\frac{\sigma}{\sqrt{BT}}\right)$$

To achieve an ϵ -accurate solution, i.e., $\frac{1}{T} \sum_{t=0}^{T} \mathbb{E} \left[\left\| \nabla f(\mathbf{x}^{(t)}) \right\|^2 \right] \le \epsilon$, it requires $\mathcal{O} \left(\frac{\sigma^2}{B\epsilon^2} \right)$.

Why Distributed Deep Learning Infrastructure Matters

normally fixed

increasing

Star/Parameter server

 $\mathcal{O}\left((t_s+t_wm)n\right)$

 t_s is the latency, t_w is inverse bandwidth, m is the message size, and n is the number of nodes.

 t_s is the latency, t_w is inverse bandwidth, *m* is the message size, and *n* is the number of nodes.

• *Parameter Server's* bandwidth will be decreased by the number of nodes, and is sensitive to the central failures.

- Parameter Server's bandwidth will be decreased by the number of nodes, and is sensitive to the central failures.
- *All-Reduce* enables full bandwidth.

• To minimize a sum of stochastic functions, with only access to stochastic samples:

$$f(\mathbf{x}^{\star}) = \min_{\mathbf{x} \in \mathbb{R}^d} \left\{ f(\mathbf{x}) := \frac{1}{n} \sum_{i=1}^n \left(f_i(\mathbf{x}) := \mathbb{E}_{\xi \in \mathcal{D}_i} \left[F_i(\mathbf{x}; \xi) \right] \right)
ight\}$$

• To minimize a sum of stochastic functions, with only access to stochastic samples:

$$f(\mathbf{x}^{\star}) = \min_{\mathbf{x} \in \mathbb{R}^d} \left\{ f(\mathbf{x}) := \frac{1}{n} \sum_{i=1}^n \left(f_i(\mathbf{x}) := \mathbb{E}_{\xi \in \mathcal{D}_i} \left[F_i(\mathbf{x};\xi) \right] \right) \right\} \,.$$

• The functions f_i represents the loss function on client/node *i* with local dataset D_i .

• To minimize a sum of stochastic functions, with only access to stochastic samples:

$$f(\mathbf{x}^{\star}) = \min_{\mathbf{x} \in \mathbb{R}^d} \left\{ f(\mathbf{x}) := \frac{1}{n} \sum_{i=1}^n \left(f_i(\mathbf{x}) := \mathbb{E}_{\xi \in \mathcal{D}_i} \left[F_i(\mathbf{x};\xi) \right] \right) \right\} \,.$$

- The functions f_i represents the loss function on client/node *i* with local dataset D_i .
- Each local distribution \mathcal{D}_i may be
 - **1** identical, e.g. data center case (achieved by shuffling across nodes)
 - 2 different, e.g. EdgeAI case (thus has data heterogeneity issue).

• To minimize a sum of stochastic functions, with only access to stochastic samples:

$$f(\mathbf{x}^{\star}) = \min_{\mathbf{x} \in \mathbb{R}^d} \left\{ f(\mathbf{x}) := \frac{1}{n} \sum_{i=1}^n \left(f_i(\mathbf{x}) := \mathbb{E}_{\xi \in \mathcal{D}_i} \left[F_i(\mathbf{x};\xi) \right] \right) \right\} \,.$$

- The functions f_i represents the loss function on client/node *i* with local dataset D_i .
- Each local distribution \mathcal{D}_i may be
 - **1** identical, e.g. data center case (achieved by shuffling across nodes)
 - 2 different, e.g. EdgeAI case (thus has data heterogeneity issue).
- Each of these clients/nodes *i* performs 1 local update.

• To minimize a sum of stochastic functions, with only access to stochastic samples:

$$f(\mathbf{x}^{\star}) = \min_{\mathbf{x} \in \mathbb{R}^d} \left\{ f(\mathbf{x}) := \frac{1}{n} \sum_{i=1}^n \left(f_i(\mathbf{x}) := \mathbb{E}_{\xi \in \mathcal{D}_i} \left[F_i(\mathbf{x};\xi) \right] \right) \right\} \,.$$

- The functions f_i represents the loss function on client/node *i* with local dataset D_i .
- Each local distribution \mathcal{D}_i may be
 - **1** identical, e.g. data center case (achieved by shuffling across nodes)
 - **2** different, e.g. EdgeAI case (thus has data heterogeneity issue).
- Each of these clients/nodes *i* performs 1 local update.
- The models are aggregated to form the new global model:

$$\mathbf{x}^{(t+1)} \leftarrow \frac{1}{n} \sum_{i=1}^{n} \left(\mathbf{x}^{(t)} - \eta_l g_i(\mathbf{x}_i^{(t)}) \right) , \qquad (C-SGD)$$

where η_l is the local step-size and $g_i(\mathbf{x}_i^{(t)}) := \nabla F_i(\mathbf{x}_i^{(t)}; \xi_i^{(t)})$.

• To minimize a sum of stochastic functions, with only access to stochastic samples:

$$f(\mathbf{x}^{\star}) = \min_{\mathbf{x} \in \mathbb{R}^d} \left\{ f(\mathbf{x}) := \frac{1}{n} \sum_{i=1}^n \left(f_i(\mathbf{x}) := \mathbb{E}_{\xi \in \mathcal{D}_i} \left[F_i(\mathbf{x};\xi) \right] \right) \right\} \,.$$

- The functions f_i represents the loss function on client/node *i* with local dataset D_i .
- Each local distribution \mathcal{D}_i may be
 - **1** identical, e.g. data center case (achieved by shuffling across nodes)
 - 2 different, e.g. EdgeAI case (thus has data heterogeneity issue).
- Each of these clients/nodes *i* performs 1 local update.
- The models are aggregated to form the new global model:

$$\mathbf{x}^{(t+1)} \leftarrow \frac{1}{n} \sum_{i=1}^{n} \left(\mathbf{x}^{(t)} - \eta_l g_i(\mathbf{x}_i^{(t)}) \right) , \qquad (C-SGD)$$

where η_l is the local step-size and $g_i(\mathbf{x}_i^{(t)}) := \nabla F_i(\mathbf{x}_i^{(t)}; \xi_i^{(t)})$.

• The convergence rate becomes (under the same assumptions as SGD)

$$\frac{1}{T}\sum_{t=0}^{T-1} \mathbb{E}\left[\left\|\nabla f(\mathbf{x}^{(t)})\right\|^2\right] \leq \mathcal{O}\left(\frac{\sigma}{\sqrt{nB_{\log}T}}\right)$$

Speed-up of Distributed Deep Learning (Data Parallelism)

Table: Distributed training ResNet-50 on ImageNet

	Metrics	4 nodes (32 GPUs)	8 nodes (64 GPUs)	16 nodes (128 GPUs)	32 nodes (256 GPUs)	Pattern
All-Reduce SGD	Accuracy Time	76.2% 22.0 hrs.	76.4% 14.0 hrs.	76.3% 8.5 hrs.	76.2% 5.1 hrs.	n 🗸

^[1] Assran et al. Stochastic gradient push for distributed deep learning. ICML 2019.

Speed-up of Distributed Deep Learning (Data Parallelism)

Table: Distributed training ResNet-50 on ImageNet

	Metrics	4 nodes (32 GPUs)	8 nodes (64 GPUs)	16 nodes (128 GPUs)	32 nodes (256 GPUs)	Pattern
All-Reduce SGD	Accuracy Time	76.2% 22.0 hrs.	76.4% 14.0 hrs.	76.3% 8.5 hrs.	76.2% 5.1 hrs.	n >

Scaling Deep Learning training with more GPUs!

^[1] Assran et al. Stochastic gradient push for distributed deep learning. ICML 2019.

No Free Lunch in Distributed Deep Learning

• Limitation 1: Diminishing returns of data parallelism with large mini-batch sizes.

No Free Lunch in Distributed Deep Learning

• Limitation 1: Diminishing returns of data parallelism with large mini-batch sizes.
No Free Lunch in Distributed Deep Learning

• Limitation 2: Communication bottleneck hinders the training scalability.

No Free Lunch in Distributed Deep Learning

- Limitation 1: Diminishing returns of data parallelism with large mini-batch sizes.
- Limitation 2: Communication bottleneck hinders the training scalability.

Answers to the Aforementioned Limitations

Large-scale training in the data center has some interesting challenges:

1 The diminishing return of large-batch training [17, 24, 15, 14]

^[17] Shallue et al. Measuring the effects of data parallelism on neural network training. JMLR 2019.

^[24] You et al. Imagenet training in minutes. ICPP 2018.

^[19] Stich et al. Sparsified sgd with memory. NeurIPS 2018.

^[18] Stich et al. Local SGD converges fast and communicates little. ICLR 2019.

^[6] Karimireddy et al. Error Feedback Fixes SignSGD and other Gradient Compression Schemes. ICML 2019.

^[22] Vogels et al. PowerSGD: Practical Low-Rank Gradient Compression for Distributed Optimization. NeurIPS 2019.

^[21] Vogels et al. Practical Low-Rank Communication Compression in Decentralized Deep Learning. NeurIPS 2020.

^[10] Koloskova et al. A unified theory of decentralized SGD with changing topology and local updates. ICML 2020.

^[15] Lin et al. Don't Use Large Mini-batches, Use Local SGD. ICLR 2020.

^[14] Lin et al. Extrapolation for Large-batch Training in Deep Learning. ICML 2020.

^[9] Koloskova*, Lin*, et al. Decentralized Deep Learning with Arbitrary Communication Compression. ICLR 2020.

^[11] Kong*, Lin*#, et al. Consensus Control for Decentralized Deep Learning. ICML 2021.

^[8] Koloskova et al. An improved analysis of gradient tracking for decentralized machine learning. NeurIPS 2021.

^[20] Vogels et al. Relaysum for decentralized deep learning on heterogeneous data. NeurIPS 2021.

Answers to the Aforementioned Limitations

Large-scale training in the data center has some interesting challenges:

- The diminishing return of large-batch training [17, 24, 15, 14]
- 2 Communication-efficient training techniques
 - Less frequent communication: Local SGD [18, 15, 10]
 - Reducing communication cost per round—compressed communication: [19, 6, 22, 9, 21]
 - Reducing communication cost per round—decentralized communication: [10, 11, 8, 20]

^[17] Shallue et al. Measuring the effects of data parallelism on neural network training. JMLR 2019.

^[24] You et al. Imagenet training in minutes. ICPP 2018.

^[19] Stich et al. Sparsified sgd with memory. NeurIPS 2018.

^[18] Stich et al. Local SGD converges fast and communicates little. ICLR 2019.

^[6] Karimireddy et al. Error Feedback Fixes SignSGD and other Gradient Compression Schemes. ICML 2019.

^[22] Vogels et al. PowerSGD: Practical Low-Rank Gradient Compression for Distributed Optimization. NeurIPS 2019.

^[21] Vogels et al. Practical Low-Rank Communication Compression in Decentralized Deep Learning. NeurIPS 2020.

^[10] Koloskova et al. A unified theory of decentralized SGD with changing topology and local updates. ICML 2020.

^[15] Lin et al. Don't Use Large Mini-batches, Use Local SGD. ICLR 2020.

^[14] Lin et al. Extrapolation for Large-batch Training in Deep Learning. ICML 2020.

^[9] Koloskova*, Lin*, et al. Decentralized Deep Learning with Arbitrary Communication Compression. ICLR 2020.

^[11] Kong*, Lin*#, et al. Consensus Control for Decentralized Deep Learning. ICML 2021.

^[8] Koloskova et al. An improved analysis of gradient tracking for decentralized machine learning. NeurIPS 2021.

^[20] Vogels et al. Relaysum for decentralized deep learning on heterogeneous data. NeurIPS 2021.

Table of Contents

1 Stochastic Gradient Descent (SGD) and Mini-batch SGD

2 Accelerated and Stabilized Optimization Methods

3 Advanced Optimization Methods

- Lookahead
- Sharpness-aware Minimization

Introduction to Distributed Deep Learning
 Preliminary for Distributed Optimization

- Federated Learning
- Summary

All previous aspects are about efficiency!

What if the privacy is a concern?

Concerns, e.g., data quality and data privacy, are rising!

Collaborative learning alleviates the data privacy concern

Collaborative learning alleviates the data privacy concern

An example: Federated Learning (FL)

Instead of sending sensitive client data over the internet, just share client models!

$$f(\mathbf{x}^{\star}) = \min_{\mathbf{x} \in \mathbb{R}^d} \left\{ f(\mathbf{x}) := \frac{1}{n} \sum_{i=1}^n \left(f_i(\mathbf{x}) \right) \right\}$$

Finite-sum empirical risk minimization problem:

$$f(\mathbf{x}^{\star}) = \min_{\mathbf{x} \in \mathbb{R}^d} \left\{ f(\mathbf{x}) := \frac{1}{n} \sum_{i=1}^n \left(f_i(\mathbf{x}) \right) \right\}$$

• The function *f_i* represents the loss function on client *i*;

$$f(\mathbf{x}^{\star}) = \min_{\mathbf{x} \in \mathbb{R}^d} \left\{ f(\mathbf{x}) := \frac{1}{n} \sum_{i=1}^n \left(f_i(\mathbf{x}) := \mathbb{E}_{\boldsymbol{\xi} \in \mathcal{D}_i} \left[F_i(\mathbf{x}; \boldsymbol{\xi}) \right] \right) \right\}$$

- The function *f_i* represents the loss function on client *i*;
- D_i indicates the local data distribution of client *i*;

$$f(\mathbf{x}^{\star}) = \min_{\mathbf{x} \in \mathbb{R}^d} \left\{ f(\mathbf{x}) := \frac{1}{n} \sum_{i=1}^n \left(f_i(\mathbf{x}) := \mathbb{E}_{\boldsymbol{\xi} \in \mathcal{D}_i} \left[F_i(\mathbf{x}; \boldsymbol{\xi}) \right] \right) \right\}$$

- The function *f_i* represents the loss function on client *i*;
- D_i indicates the local data distribution of client *i*;
- $F_i(\mathbf{x}, \xi)$ corresponds to the sample-wise loss function;

$$f(\mathbf{x}^{\star}) = \min_{\mathbf{x} \in \mathbb{R}^d} \left\{ f(\mathbf{x}) := \frac{1}{n} \sum_{i=1}^n \left(f_i(\mathbf{x}) := \mathbb{E}_{\boldsymbol{\xi} \in \mathcal{D}_i} \left[F_i(\mathbf{x}; \boldsymbol{\xi}) \right] \right) \right\}$$

- The function *f_i* represents the loss function on client *i*;
- D_i indicates the local data distribution of client *i*;
- $F_i(\mathbf{x}, \xi)$ corresponds to the sample-wise loss function;
- FedAvg performs multiple local update steps per round.

Challenges of FL [13, 4, 23]

Communication overhead

slow & unreliable networks

Data heterogeneity

highly non-identically distributed data

Systems heterogeneity

variable hardware, power, etc

Privacy concerns privacy leakage

^[13] Li et al. Federated Learning: Challenges, Methods, and Future Directions. 2020.

^[4] Kairouz et al. Advances and open problems in federated learning. 2021.

^[23] Wang et al. A Field Guide to Federated Optimization. 2021.

Challenges of FL [13, 4, 23]

Communication overhead slow & unreliable networks

Data heterogeneity highly non-identically distributed data

Systems heterogeneity variable hardware, power, etc

Privacy concerns privacy leakage

^[13] Li et al. Federated Learning: Challenges, Methods, and Future Directions. 2020.

^[4] Kairouz et al. Advances and open problems in federated learning. 2021.

^[23] Wang et al. A Field Guide to Federated Optimization. 2021.

Data heterogeneity in FL

Client drift issue defined in [5].

^[5] Karimireddy et al. SCAFFOLD: Stochastic controlled averaging for federated learning. ICML 2020.

Data heterogeneity in FL

Client drift issue defined in [5].

Data-dissimilarity $\zeta^2 > 0$ causes *drift* when doing local steps.

$$\mathbb{E}_{i}\left[\left\|\nabla f_{i}(\mathbf{x}) - \nabla f(\mathbf{x})\right\|^{2}\right] \leq \zeta^{2}$$
(21)

^[5] Karimireddy et al. SCAFFOLD: Stochastic controlled averaging for federated learning. ICML 2020.

Table of Contents

1 Stochastic Gradient Descent (SGD) and Mini-batch SGD

2 Accelerated and Stabilized Optimization Methods

3 Advanced Optimization Methods

- Lookahead
- Sharpness-aware Minimization

4 Introduction to Distributed Deep Learning

- Preliminary for Distributed Optimization
- Federated Learning
- Summary

• Theoretically linear speedup by adding more GPUs

- Theoretically linear speedup by adding more GPUs
- Diminishing returns for large-batch region

- Theoretically linear speedup by adding more GPUs
- Diminishing returns for large-batch region
- Communication bottleneck for large-scale training

- Theoretically linear speedup by adding more GPUs
- Diminishing returns for large-batch region
- Communication bottleneck for large-scale training

Ocommunication-efficient training techniques

- · Theoretically linear speedup by adding more GPUs
- Diminishing returns for large-batch region
- Communication bottleneck for large-scale training
- Ocommunication-efficient training techniques
 - Compressed communication
- Theoretically linear speedup by adding more GPUs
- Diminishing returns for large-batch region
- Communication bottleneck for large-scale training
- Ocommunication-efficient training techniques
 - Compressed communication
 - A line of research requires unbiased gradient estimator, which is non-trivial

- Theoretically linear speedup by adding more GPUs
- Diminishing returns for large-batch region
- Communication bottleneck for large-scale training
- Ocommunication-efficient training techniques
 - Compressed communication
 - A line of research requires unbiased gradient estimator, which is non-trivial
 - Error-feedback enables the convergence for arbitrary compressors, even for biased estimator

- Theoretically linear speedup by adding more GPUs
- Diminishing returns for large-batch region
- Communication bottleneck for large-scale training
- 2 Communication-efficient training techniques
 - Compressed communication
 - A line of research requires unbiased gradient estimator, which is non-trivial
 - · Error-feedback enables the convergence for arbitrary compressors, even for biased estimator
 - Decentralized communication

- Theoretically linear speedup by adding more GPUs
- Diminishing returns for large-batch region
- Communication bottleneck for large-scale training
- 2 Communication-efficient training techniques
 - Compressed communication
 - A line of research requires unbiased gradient estimator, which is non-trivial
 - Error-feedback enables the convergence for arbitrary compressors, even for biased estimator
 - Decentralized communication
 - Nodes only communicate with its neighborhood, reducing the cost per iteration.

- Theoretically linear speedup by adding more GPUs
- Diminishing returns for large-batch region
- Communication bottleneck for large-scale training
- 2 Communication-efficient training techniques
 - Compressed communication
 - A line of research requires unbiased gradient estimator, which is non-trivial
 - Error-feedback enables the convergence for arbitrary compressors, even for biased estimator
 - Decentralized communication
 - Nodes only communicate with its neighborhood, reducing the cost per iteration.
 - Trade-off between degraded test accuracy and improved communication efficiency.

Thanks & Question Time!

- M. Assran, N. Loizou, N. Ballas, and M. Rabbat. Stochastic gradient push for distributed deep learning. In *International Conference on Machine Learning*, pages 344–353. PMLR, 2019.
- [2] J. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient methods for online learning and stochastic optimization. *Journal of machine learning research*, 12(7), 2011.
- [3] P. Foret, A. Kleiner, H. Mobahi, and B. Neyshabur. Sharpness-aware minimization for efficiently improving generalization. In *International Conference on Learning Representations*, 2021.
- [4] P. Kairouz, H. B. McMahan, B. Avent, A. Bellet, M. Bennis, A. N. Bhagoji, K. Bonawitz, Z. Charles, G. Cormode, R. Cummings, et al. Advances and open problems in federated learning. *Foundations and Trends® in Machine Learning*, 14(1–2):1–210, 2021.
- [5] S. P. Karimireddy, S. Kale, M. Mohri, S. Reddi, S. Stich, and A. T. Suresh. Scaffold: Stochastic controlled averaging for federated learning. In *International Conference on Machine Learning*, pages 5132–5143. PMLR, 2020.
- [6] S. P. Karimireddy, Q. Rebjock, S. Stich, and M. Jaggi. Error feedback fixes signsgd and other gradient compression schemes. In *International Conference on Machine Learning*, pages 3252–3261. PMLR, 2019.
- [7] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. *arXiv preprint arXiv:1412.6980*, 2014.

- [8] A. Koloskova, T. Lin, and S. U. Stich. An improved analysis of gradient tracking for decentralized machine learning. *Advances in Neural Information Processing Systems*, 34:11422–11435, 2021.
- [9] A. Koloskova, T. Lin, S. U. Stich, and M. Jaggi. Decentralized deep learning with arbitrary communication compression. In *International Conference on Learning Representations*, 2020.
- [10] A. Koloskova, N. Loizou, S. Boreiri, M. Jaggi, and S. Stich. A unified theory of decentralized sgd with changing topology and local updates. In *International Conference on Machine Learning*, pages 5381–5393. PMLR, 2020.
- [11] L. Kong, T. Lin, A. Koloskova, M. Jaggi, and S. U. Stich. Consensus control for decentralized deep learning. In *International Conference on Machine Learning*, 2021.
- [12] H. Li, Z. Xu, G. Taylor, C. Studer, and T. Goldstein. Visualizing the loss landscape of neural nets. *Advances in neural information processing systems*, 31, 2018.
- [13] T. Li, A. K. Sahu, A. Talwalkar, and V. Smith. Federated learning: Challenges, methods, and future directions. *IEEE signal processing magazine*, 37(3):50–60, 2020.
- [14] T. Lin, L. Kong, S. Stich, and M. Jaggi. Extrapolation for large-batch training in deep learning. In *International Conference on Machine Learning*, pages 6094–6104. PMLR, 2020.

- [15] T. Lin, S. U. Stich, K. K. Patel, and M. Jaggi. Don't use large mini-batches, use local sgd. In *International Conference on Learning Representations*, 2020.
- [16] I. Loshchilov and F. Hutter. Decoupled weight decay regularization. *arXiv preprint arXiv:1711.05101*, 2017.
- [17] C. J. Shallue, J. Lee, J. Antognini, J. Sohl-Dickstein, R. Frostig, and G. E. Dahl. Measuring the effects of data parallelism on neural network training. *arXiv preprint arXiv:1811.03600*, 2018.
- [18] S. U. Stich. Local sgd converges fast and communicates little. In *International Conference on Learning Representations*, 2019.
- [19] S. U. Stich, J.-B. Cordonnier, and M. Jaggi. Sparsified sgd with memory. In *Advances in Neural Information Processing Systems*, pages 4447–4458, 2018.
- [20] T. Vogels, L. He, A. Koloskova, S. P. Karimireddy, T. Lin, S. Stich, and M. Jaggi. Relaysum for decentralized deep learning on heterogeneous data. 2021.
- [21] T. Vogels, S. P. Karimireddy, and M. Jaggi. Practical low-rank communication compression in decentralized deep learning. In *NeurIPS*, 2020.
- [22] T. Vogels, S. P. Karinireddy, and M. Jaggi. Powersgd: Practical low-rank gradient compression for distributed optimization. *Advances In Neural Information Processing Systems 32 (Nips 2019)*, 32(CONF), 2019.
- [23] J. Wang, Z. Charles, Z. Xu, G. Joshi, H. B. McMahan, M. Al-Shedivat, G. Andrew, S. Avestimehr, K. Daly, D. Data, et al. A field guide to federated optimization. arXiv preprint arXiv:2107.06917, 2021.

- [24] Y. You, Z. Zhang, C.-J. Hsieh, J. Demmel, and K. Keutzer. Imagenet training in minutes. In *Proceedings of the 47th International Conference on Parallel Processing*, pages 1–10, 2018.
- [25] M. Zhang, J. Lucas, J. Ba, and G. E. Hinton. Lookahead optimizer: k steps forward, 1 step back. Advances in neural information processing systems, 32, 2019.