Optimization for Deep Learning

Tao LIN

Learning and INference Systems (LINs) Lab, Westlake University

March 3, 2024

U WESTLAKE | SCHOOL OF
UNIVERSITY | ENGINEERING

1/50

Table of Contents

@ Stochastic Gradient Descent (SGD) and Mini-batch SGD

2/50

@ Getdata: &,...,&y, Where & := (d,y);

3/50

Background

@ Getdata: &;,...,&y, where & := (d,y);
® Choose a classifier

3/50

Background

@ Getdata: &;,...,&y, where & := (d,y);
® Choose a classifier

® Choose a loss function: ¢(hy(d,y)) > 0

3/50

Background

@ Getdata: &;,...,&y, where & := (d,y);
® Choose a classifier

hx(d) =y
s 1
hx<4_‘§>acat)
Y]
® Choose a loss function: ¢(hy(d,y)) > 0
@ Solve the training problem:
N
min — > € (h(d;), yi) (2)

3/50

Background

Finite-sum empirical risk minimization problem:

f(x*>=gRg{ : ijj(—Px&))} (3)

4/50

Background

Finite-sum empirical risk minimization problem:

* . 1 a
f(¢) = min {f(X) =N (0 = Fx.€)) } ®)

® The loss function of i-th data &; := (d;, ;) J

4/50

Background

Finite-sum empirical risk minimization problem:

N
£x) = min {f(x) =20 (0 = E(x)) } 3)
i=1

¢ The loss function of i-th data &; :

(dia yl)
¢ Baseline method: Stochastic Gradient Descent (SGD)

x0T =X — VF(x®), &)

©) surting oot

FOlN POR P

o
Device 1

4/50

Background

Finite-sum empirical risk minimization problem:

f(¢') = min {f(x) =5 2 (flx) = Fx&)) } @)

¢ The loss function of i-th data &; :

(dia yl)
¢ Baseline method: Stochastic Gradient Descent (SGD)

X =x0 = VE",)

(4)
® 7 is step-size/learning rate <\J

() starting point

FoN PoR Pe)

o
Device 1

Solution

4/50

Background

Finite-sum empirical risk minimization problem:

f(¢') = min {f(x) =20 (700 = Fx &) } @)

i=1
¢ The loss function of i-th data &; :

(dia yl)
¢ Baseline method: Stochastic Gradient Descent (SGD)

x0T =X — VF(x®), &)

(4)
® 7 is step-size/learning rate <_JJ
® samplediid.i e {1,...,N}

() starting point

FOR PeN e

o
Device 1

Solution

4/50

Background

Finite-sum empirical risk minimization problem:

* . 1 a .
f(¢) = min {f(X) N (0 = F(x.&))} @)
® The loss function of i-th data &, := (d;, ;)

¢ Baseline method: Stochastic Gradient Descent (SGD)

xHD — x(B) _ %Z nV£i(x) (Using mini-batching)
ieB

x@ el | [P1e

o
Device 1

4/50

Background

Finite-sum empirical risk minimization problem:

* . 1 a .
f(¢) = min {f(X) N (0 = F(x.&))} @)
® The loss function of i-th data &, := (d;, ;)

¢ Baseline method: Stochastic Gradient Descent (SGD)

xHD — x(B) _ %Z nV£i(x) (Using mini-batching)
ieB

° Be{l,...,N} with |B| = B.

x@ el | [P1e

o
Device 1

4/50

Backg round: Stochastic reformulation of finite-sum problems: SGD with arbitrary sampling

Random sampling vector v = (vy,...,o5) ~ Dwith E[v;] =1 fori=1,...,N.

5/50

Backg round: Stochastic reformulation of finite-sum problems: SGD with arbitrary sampling

Random sampling vector v = (vy,...,o5) ~ Dwith E[v;] =1 fori=1,...,N.

N

N N
f(x) = %Zﬁ(x) % Z [vi] fi(x) = % Zvifi(x) (Stochastic Reformulation)

i=1 i=1 i=1
=:fo(x)

5/50

Backg round: Stochastic reformulation of finite-sum problems: SGD with arbitrary sampling

Random sampling vector v = (vy,...,o5) ~ DwithE[v;] =1 fori=1,...,N.
1N 1N
f(x):= N ;fi(X) N ; [vi] fi(x) N Z vfi(x (Stochastic Reformulation)
=:fo(%)

Stochastic Reformulation

Original Finite-sum problem

min E [f,(x)] (5)
1‘llllllllllllllll’) xERA
min — 4
xeR! N Zﬁ @ Minimizing the expectation of random

linear combinations of original function

5/50

Backg round: Stochastic reformulation of finite-sum problems: SGD with arbitrary sampling

Random sampling vector v = (v, ...

N
F) = 5 A0 = 15 SO Elodflx
i i=1

Original Finite-sum problem

Sample v ~ D

XD x(®) nVf,o (x®)

(6)

7ZJN)'\/'DWiHWI[‘E[Ui]:1 fori:1,...,N.

N Z oifi(x (Stochastic Reformulation)

=:fo(x)

Stochastic Reformulation

min E [f,(x)] (5)
4‘llllllllllllllll’) xERA
min — 4
xekd N Zﬁ) Minimizing the expectation of random
1« linear combinations of original function

5/50

Backg round: Stochastic reformulation of finite-sum problems: SGD with arbitrary sampling

Random sampling vector v = (v, ...

N

1 1
5) = 5 S Elplfix) =B

7ZJN)'\/'DWiHWI[‘E[Ui]:1 fori:1,...,N.
1 . .
N > ufi(x)| (Stochastic Reformulation)
i=1
=:fo(x)

Original Finite-sum problem

1 N
min 5 > ()
i=1

(4)

) E—

1

Stochastic Reformulation

min E [f,(x)]

xER4

()

Minimizing the expectation of random

linear combinations of original function

Sample o) ~ D

i

x(HD x® nVf.o (x®)

(6)

The distribution D encodes
any form of mini-batching
/ non-uniform sampling.

5/50

The convergence of mini-batch SGD

Assumption 1

® The function f(x) we are minimizing is lower bounded from below by f* := f(x*), and
each f; is L-smooth satisfying || Vfi(y)—Vfi(x)|| < L|y—x||

6/50

The convergence of mini-batch SGD

Assumption 1

® The function f (x) we are minimizing is lower bounded from below by f* := f(x*), and
each f; is L-smooth satisfying ||Vfi(y)—Vfi(x)|| < L|ly—x]||

e The stochastic gradients satisfy E [Vf;(x)] =Vf(x) and E | Vf;(x) - Vf(x)||* < 2.

6/50

The convergence of mini-batch SGD

Assumption 1

® The function f (x) we are minimizing is lower bounded from below by f* := f(x*), and
each f; is L-smooth satisfying ||Vfi(y)—Vfi(x)|| < L |ly—x||

e The stochastic gradients satisfy E [Vf;(x)] =Vf(x) and E || Vf,(x)~Vf(x)||* < o2.

Theorem 1 (Convergence rate of mini-batch SGD for non-convex functions)

{va (x) H } <0 ((f(X;)—f*) .\ \/%\/m)

~l =
M’ﬂ

T
o

6/50

The convergence of mini-batch SGD

Assumption 1

® The function f (x) we are minimizing is lower bounded from below by f* := f(x*), and
each f; is L-smooth satisfying ||Vfi(y)—Vfi(x)|| < L |ly—x||

e The stochastic gradients satisfy E [Vf;(x)] =Vf(x) and E || Vf,(x)~Vf(x)||* < o2.

Theorem 1 (Convergence rate of mini-batch SGD for non-convex functions)
® [-smoothness

] o tm=rs 2 =)

6/50

The convergence of mini-batch SGD

Assumption 1

® The function f (x) we are minimizing is lower bounded from below by f* := f(x*), and
each f; is L-smooth satisfying ||Vfi(y)—Vfi(x)|| < L |ly—x||

e The stochastic gradients satisfy E [Vf;(x)] =Vf(x) and E || Vf,(x)~Vf(x)||* < o2.

Theorem 1 (Convergence rate of mini-batch SGD for non-convex functions)
® [-smoothness

e <o tm=rs 2 =)
e T: number of iterations _/

6/50

The convergence of mini-batch SGD

Assumption 1

® The function f (x) we are minimizing is lower bounded from below by f* := f(x*), and
each f; is L-smooth satisfying ||Vfi(y)—Vfi(x)|| < L|ly—x]||

e The stochastic gradients satisfy E [Vf;(x)] =Vf(x) and E || Vf;(x)-Vf(x)||* < o2.
Theorem 1 (Convergence rate of mini-batch SGD for non-convex functions)
o L-smoothness/\

LS [Jopn]] <o (uﬂT)—f)

t=0

e T: number of iterations —/

® ¢: stochastic gradient variance

6/50

The convergence of mini-batch SGD

Assumption 1

® The function f (x) we are minimizing is lower bounded from below by f* := f(x*), and
each f; is L-smooth satisfying ||Vfi(y)—Vfi(x)|| < L |ly—x||

e The stochastic gradients satisfy E [Vf;(x)] =Vf(x) and E || Vf;(x)-Vf(x)||* < o2.

Theorem 1 (Convergence rate of mini-batch SGD for non-convex functions)

e [.-smoothness —/—\

1y ’vfxa m 0 xO)—f*)

t=0

AN f*))

e T: number of /terat/ons
® ¢: stochastic gradient variance
® B: mini-batch size of B

6/50

The convergence of mini-batch SGD

Theorem 1 (Convergence rate of mini-batch SGD for non-convex functions)

o[- smoothness/_\

Ly o \ﬂ 0 s
t=0

o L) —f*))

T: number of /terat/ons
e o: stochastic gradient variance
B: mini-batch size of B

When iterations T — oo, it holds that E [HVf(x(t))Hﬂ -0

6/50

The convergence of mini-batch SGD

Theorem 1 (Convergence rate of mini-batch SGD for non-convex functions)

o[- smoothness/_\

e zo (152

t=0

o L) —f*))

T: number of /terat/ons
e o: stochastic gradient variance
B: mini-batch size of B

When iterations T — oo, it holds that E [HVf(x(t))Hﬂ -0

E U]Vf(x(t))m — 0 implies the sequence converges to a stationary solution

6/50

Table of Contents

@ Accelerated and Stabilized Optimization Methods

7/50

Issues of SGD—from the perspective of loss landscape

(a) ResNet w/o skip connections. (b) ResNet w/ skip connections.

Figure: The surfaces of ResNet-56 w/ and w/o skip connections [12].

[12] Li et al. Visualizing the Loss Landscape of Neural Nets. NeurlPS 2018. 8/50

Issues of SGD—from the perspective of loss landscape

LAV

the local optimum the plateau

the saddle point

Challenging optimization loss landscape!

Figures borrowed from https://cs182sp2l.github.io/static/slides/lec—4.pdf a/50

https://cs182sp21.github.io/static/slides/lec-4.pdf

Issues of SGD—from the perspective of loss landscape
X0 Starting Point

—nVEF(xo,&;

Optimum

X1

Solution

¢ Challenges # 1: loss function has high condition number.
— very slow progress along shallow dimension, jitter along steep direction.

Visualizations based on Gabriel Goh'’s distill.pub article: https://distill.pub/2017/momentum/ /50

https://distill.pub/2017/momentum/

Issues of SGD—from the perspective of loss landscape
X0 Starting Point

—nVEF(xo,&;

Optimum

X1

Solution

¢ Challenges # 1: loss function has high condition number.
— very slow progress along shallow dimension, jitter along steep direction.

¢ Challenges # 2 & more: plateaus & saddle points.

Visualizations based on Gabriel Goh'’s distill.pub article: https://distill.pub/2017/momentum/ /50

https://distill.pub/2017/momentum/

Issues of SGD—from the perspective of loss landscape
X0 Starting Point

—nVEF(xo,&;

Optimum

X1

Solution

¢ Challenges # 1: loss function has high condition number.
— very slow progress along shallow dimension, jitter along steep direction.

¢ Challenges # 2 & more: plateaus & saddle points.
— cannot just choose tiny learning rates to prevent oscillation!

Visualizations based on Gabriel Goh'’s distill.pub article: https://distill.pub/2017/momentum/ /50

https://distill.pub/2017/momentum/

Issues of SGD—from the perspective of loss landscape
X0 Starting Point

—nVEF(xo,&;

Optimum

X1

Solution

¢ Challenges # 1: loss function has high condition number.
— very slow progress along shallow dimension, jitter along steep direction.
¢ Challenges # 2 & more: plateaus & saddle points.

— cannot just choose tiny learning rates to prevent oscillation!
— need learning rates to be large enough not to get stuck in a plateau.

Visualizations based on Gabriel Goh'’s distill.pub article: https://distill.pub/2017/momentum/ /50

https://distill.pub/2017/momentum/

Issues of SGD—from the perspective of loss landscape
X0 Starting Point

—nVEF(xo,&;

Optimum

X1

Solution

¢ Challenges # 1: loss function has high condition number.
— very slow progress along shallow dimension, jitter along steep direction.

¢ Challenges # 2 & more: plateaus & saddle points.
— cannot just choose tiny learning rates to prevent oscillation!
— need learning rates to be large enough not to get stuck in a plateau.
— saddle points have very small gradients: but much more common in high dimension.

Visualizations based on Gabriel Goh'’s distill.pub article: https://distill.pub/2017/momentum/ /50

https://distill.pub/2017/momentum/

Improvement directions: leveraging the curvature information

Can we find a better descent direction in the loss landscape?
Yes! By leveraging the curvature information through Newton’s method.

9/50

Improvement directions: leveraging the curvature information

Can we find a better descent direction in the loss landscape?
Yes! By leveraging the curvature information through Newton’s method.

Taylor expansion:

F09 = flw) £ Go)x =) 4 of G- () S

9/50

Improvement directions: leveraging the curvature information

Can we find a better descent direction in the loss landscape?
Yes! By leveraging the curvature information through Newton’s method.

Taylor expansion:
F09 = flw) £ Go)x =) 4 of G- () S
Multivariate case:
F0) % fx0) + Ff (x0)(x — x0) + 3 (x— x0) T V) (x — x0)
——

——
gradient Hessian

(8)

9/50

Improvement directions: leveraging the curvature information

Can we find a better descent direction in the loss landscape?
Yes! By leveraging the curvature information through Newton’s method.

Taylor expansion:

F09 = flw) £ Go)x =) 4 of G- () S

Multivariate case:

F0) % fx0) + Ff (x0)(x — x0) + 3 (x— x0) T V) (x — x0)
gradient Hessian

(8)
Solution (can optimize this analytically!):
X x9 — (V2 (x0)) " Vi (x0))

9/50

Improvement directions: trade-offs and approximations

Q: Why is Newton’s method not a viable way to improve neural network optimization?

Tif using naive approach, though fancy methods can be much faster if they avoid forming the Hessian explicitly. o7e0

Improvement directions: trade-offs and approximations

Q: Why is Newton’s method not a viable way to improve neural network optimization?

GD (w/o Hessian): O(N) V.S. GD (w/ Hessian)': O(N?®)

Tif using naive approach, though fancy methods can be much faster if they avoid forming the Hessian explicitly. o7e0

Improvement directions: trade-offs and approximations

Q: Why is Newton’s method not a viable way to improve neural network optimization?

GD (w/o Hessian): O(N) V.S. GD (w/ Hessian)': O(N?®)

We would prefer methods that don’t require second derivatives, but somehow
“stabilize” / “accelerate” gradient descent instead.

Tif using naive approach, though fancy methods can be much faster if they avoid forming the Hessian explicitly. o7e0

w/o0 momentum

11/50

https://distill.pub/2017/momentum/

Momentum method

w/0 momentum w/ momentum

11/50

https://distill.pub/2017/momentum/

Momentum method

w/0 momentum w/ momentum

Intuition: averaging together successive gradients yield a much better direction!

11/50

https://distill.pub/2017/momentum/

Momentum method

w/0 momentum w/ momentum

Intuition: averaging together successive gradients yield a much better direction!
e if successive gradient step point in different directions

11/50

https://distill.pub/2017/momentum/

Momentum method

w/0 momentum w/ momentum

Intuition: averaging together successive gradients yield a much better direction!
e if successive gradient step point in different directions
— we should cancel off the directions that disagree

11/50

https://distill.pub/2017/momentum/

Momentum method

w/0 momentum w/ momentum

Intuition: averaging together successive gradients yield a much better direction!
e if successive gradient step point in different directions
— we should cancel off the directions that disagree

e if successive gradient step point in similar directions

11/50

https://distill.pub/2017/momentum/

Momentum method

w/0 momentum w/ momentum

Intuition: averaging together successive gradients yield a much better direction!
e if successive gradient step point in different directions
— we should cancel off the directions that disagree

e if successive gradient step point in similar directions
— we should go faster in that direction

11/50

https://distill.pub/2017/momentum/

Momentum method

w/0 momentum w/ momentum

Intuition: averaging together successive gradients yield a much better direction!
e if successive gradient step point in different directions
— we should cancel off the directions that disagree

e if successive gradient step point in similar directions
— we should go faster in that direction

m; = ﬂmt_l + VF(Xt, €t) y Xp+1 = Xp — NIy (SGD w/ momentum)

t
Xip1= X0 —1) Z VF(x;, &) (Unroll SGD w/o momentum)

11/50

https://distill.pub/2017/momentum/

Methods that manipulate gradient scale

Intuition behind VF(x;, &;):
® sign:

12/50

Methods that manipulate gradient scale

Intuition behind VF(x;, &;):
® sign:
® magnitude:

12/50

Methods that manipulate gradient scale

Intuition behind VF(x;, &;):
* sign: the sign of the gradient tells us which way to go along each dimension;
® magnitude:

12/50

Methods that manipulate gradient scale

Intuition behind VF(x;, &;):
* sign: the sign of the gradient tells us which way to go along each dimension;
® magnitude: the magnitude is not so great, and could be even worse:

12/50

Methods that manipulate gradient scale

Intuition behind VF(x;, &;):
* sign: the sign of the gradient tells us which way to go along each dimension;
® magnitude: the magnitude is not so great, and could be even worse:

— overall magnitude of the gradient can change drastically during the optimization,

12/50

Methods that manipulate gradient scale

Intuition behind VF(x;, &;):
* sign: the sign of the gradient tells us which way to go along each dimension;
® magnitude: the magnitude is not so great, and could be even worse:

— overall magnitude of the gradient can change drastically during the optimization,
making learning rates hard to tune.

12/50

Methods that manipulate gradient scale

Intuition behind VF(x;, &;):
* sign: the sign of the gradient tells us which way to go along each dimension;
® magnitude: the magnitude is not so great, and could be even worse:

— overall magnitude of the gradient can change drastically during the optimization,
making learning rates hard to tune.

Idea: normalize out the magnitude of the gradient along each dimension.

12/50

Methods that manipulate gradient scale: rmsProp, AdaGrad, and their differences

AdaGrad [2] (estimate per-dimension cumulative magnitude):

vi = vi_1 + (VF(xy, &))2 (roughly the squared length of each dimension)
VF(xh £t)
Vvt

Xti1 =Xp— 1) (each dimension is divided by its magnitude)

RMSPI’Op. https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf.

[2] Duchi et al. Adaptive subgradient methods for online learning and stochastic optimization. COLT 2010. 13/50

https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf

Methods that manipulate gradient scale: rmsProp, AdaGrad, and their differences

AdaGrad [2] (estimate per-dimension cumulative magnitude):

vi = vi_1 + (VF(xy, ;5}))2 (roughly the squared length of each dimension)
VF(xh £t)
Vvt

RMSProp (estimate per-dimension magnitude):

Xti1 =Xp— 1) (each dimension is divided by its magnitude)

vi=pBvie1+ (1-06) (Vl—“(xt,gt))2 (roughly the squared length of each dimension)

VF(x . L . .
Xt41 = Xt — nf/i’gt) (each dimension is divided by its magnitude)
Vi
RMSProp. nttps://wau.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lecé.pdf.

[2] Duchi et al. Adaptive subgradient methods for online learning and stochastic optimization. COLT 2010. 13/50

https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf

Methods that manipulate gradient scale: rmsProp, AdaGrad, and their differences

AdaGrad [2] (estimate per-dimension cumulative magnitude):

vi = vi_1 + (VF(xy, ;5}))2 (roughly the squared length of each dimension)
VF(xh £t)
Vvt

RMSProp (estimate per-dimension magnitude):

Xti1 =Xp— 1) (each dimension is divided by its magnitude)

vi=pBvie1+ (1-06) (Vl—“(xt,gt))2 (roughly the squared length of each dimension)

VEF(x . e e . .
Xt41 = Xt — nf/i’gt) (each dimension is divided by its magnitude)
Vi
Remarks:
RMSProp. nttps://wau.cs.toronto.edu/~tijnen/csc321/slides/lecture_slides_lec6.pdf.

[2] Duchi et al. Adaptive subgradient methods for online learning and stochastic optimization. COLT 2010. 13750

https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf

Methods that manipulate gradient scale: rmsProp, AdaGrad, and their differences

AdaGrad [2] (estimate per-dimension cumulative magnitude):

vi = vi_1 + (VF(xy, ;5}))2 (roughly the squared length of each dimension)
VF(xh £t)
Vvt

RMSProp (estimate per-dimension magnitude):

Xti1 =Xp— 1) (each dimension is divided by its magnitude)

vi=pBvie1+ (1-06) (Vl—“(xt,gt))2 (roughly the squared length of each dimension)
VF(XM gt)
VVi

Xi11 =Xp — N (each dimension is divided by its magnitude)

Remarks:
e AdaGrad has some appealing guarantees for convex problems.

RMSPI’Op. https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf.

[2] Duchi et al. Adaptive subgradient methods for online learning and stochastic optimization. COLT 2010. 13/50

https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf

Methods that manipulate gradient scale: rmsProp, AdaGrad, and their differences

AdaGrad [2] (estimate per-dimension cumulative magnitude):

vi = vi_1 + (VF(xy, ;5}))2 (roughly the squared length of each dimension)
VF(xh £t)
Vvt

RMSProp (estimate per-dimension magnitude):

Xti1 =Xp— 1) (each dimension is divided by its magnitude)

vi=pBvie1+ (1-06) (Vl—“(xt,gt))2 (roughly the squared length of each dimension)
VF(XM gt)
VVi

Xi11 =Xp — N (each dimension is divided by its magnitude)

Remarks:
e AdaGrad has some appealing guarantees for convex problems.
— AdaGrad originally proposed to benefit from sparse data.

RMSPI’Op. https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf.

[2] Duchi et al. Adaptive subgradient methods for online learning and stochastic optimization. COLT 2010. 13/50

https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf

Methods that manipulate gradient scale: rmsProp, AdaGrad, and their differences

AdaGrad [2] (estimate per-dimension cumulative magnitude):

vi = vi_1 + (VF(xy, ;5}))2 (roughly the squared length of each dimension)
VF(xh £t)
Vvt

RMSProp (estimate per-dimension magnitude):

Xti1 =Xp— 1) (each dimension is divided by its magnitude)

vi=pBvie1+ (1-06) (Vl—“(xt,gt))2 (roughly the squared length of each dimension)
VF(XM gt)
VVi

Xi11 =Xp — N (each dimension is divided by its magnitude)

Remarks:
e AdaGrad has some appealing guarantees for convex problems.
— AdaGrad originally proposed to benefit from sparse data.
— Learning rate effectively “decreases” over time: good for convex (bad for non-convex).

RMSPI’Op. https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf.

[2] Duchi et al. Adaptive subgradient methods for online learning and stochastic optimization. COLT 2010. 13/50

https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf

Methods that manipulate gradient scale: rmsProp, AdaGrad, and their differences

AdaGrad [2] (estimate per-dimension cumulative magnitude):

vi = vi_1 + (VF(xy, ;5}))2 (roughly the squared length of each dimension)
VF(xh £t)
Vvt

RMSProp (estimate per-dimension magnitude):

Xti1 =Xp— 1) (each dimension is divided by its magnitude)

vi=pBvie1+ (1-06) (Vl—“(xt,gt))2 (roughly the squared length of each dimension)
VF(XM gt)
VVi

Xi11 =Xp — N (each dimension is divided by its magnitude)

Remarks:
e AdaGrad has some appealing guarantees for convex problems.

— AdaGrad originally proposed to benefit from sparse data.
— Learning rate effectively “decreases” over time: good for convex (bad for non-convex).

¢ RMSProp tends to be much better for deep learning (and most non-convex problems)

RMSPI’Op. https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf.

[2] Duchi et al. Adaptive subgradient methods for online learning and stochastic optimization. COLT 2010. 13/50

https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf

Adam: combining momentum and RMSProp

Idea:

[7] Kingma et al. Adam: A method for stochastic optimization. ICLR 2015 (Google Scholar 12w+) areo

Adam: combining momentum and RMSProp

Idea:
e Maintain exponential moving averages of gradient and its square

[7] Kingma et al. Adam: A method for stochastic optimization. ICLR 2015 (Google Scholar 12w+) areo

Adam: combining momentum and RMSProp

Idea:
e Maintain exponential moving averages of gradient and its square

* Update proportional to average gradient
\/ average squared gradient

[7] Kingma et al. Adam: A method for stochastic optimization. ICLR 2015 (Google Scholar 12w+) aren

Adam: combining momentum and RMSProp

Idea:
e Maintain exponential moving averages of gradient and its square

* Update proportional to average gradient
\/ average squared gradient

m; = fymy_1 + (1 — 1) VF(xt, &;) (first moment estimate)
v = Govi1 + (1 —) (VF(x,g,gt))2 (second moment estimate)
m; n

Xt+1 = X¢ — 1 \//i;;‘:¥j‘* =Xt — wv/;;;‘g:‘g’ m; (LJ[)(jEitGB SStfaF))

element-wise stepsize

[7] Kingma et al. Adam: A method for stochastic optimization. ICLR 2015 (Google Scholar 12w+)

14/50

Adam: combining momentum and RMSProp

Idea:
e Maintain exponential moving averages of gradient and its square

* Update proportional to average gradient
\/ average squared gradient

m; = fymy_1 + (1 — 1) VF(xt, &;) (first moment estimate)
v = Govi1 + (1 —) (VF(x,g,gt))2 (second moment estimate)
m L m; (update step)

X = Xy — = Xt —
t41 t n N/i;;‘q:‘* t \/;;;AJZAE

element-wise stepsize

where compared to RMSProp, Adam

[7] Kingma et al. Adam: A method for stochastic optimization. ICLR 2015 (Google Scholar 12w+)

14/50

Adam: combining momentum and RMSProp

Idea:
e Maintain exponential moving averages of gradient and its square

* Update proportional to average gradient
\/ average squared gradient

m; = Sim;_1 + (1 — B1)VF(xt, &) (first moment estimate)
v = Govi1 + (1 —) (VF(x,g,gt))2 (second moment estimate)
m; n

=X — ———= = X} — update ste
Xt+1 Xt n\/‘m Xt \/m m; (p p)

element-wise stepsize

where compared to RMSProp, Adam

* replaces —L—VF(x;, ;) by

n
r+6mt.

[7] Kingma et al. Adam: A method for stochastic optimization. ICLR 2015 (Google Scholar 12w+)

14/50

Adam: combining momentum and RMSProp

Idea:
e Maintain exponential moving averages of gradient and its square

* Update proportional to average gradient
\/ average squared gradient

m; = fymy_1 + (1 — 1) VF(xt, &;) (first moment estimate)
v = Govi1 + (1 —) (VF(x,g,gt))2 (second moment estimate)
My — L m; (update step)

X = Xy — —_—
N T Vi te

element-wise stepsize

where compared to RMSProp, Adam

® replaces \/‘%VF(xt,gt) by ﬁmt.
® adds bias correction (omitted in the expression above): it avoids large stepsizes in early

stages of run (especially when £, is close to 1).

[7] Kingma et al. Adam: A method for stochastic optimization. ICLR 2015 (Google Scholar 12w+)

14/50

Adam: combining momentum and RMSProp

10° MNIST Multilayer Neural Network + dropout

AdaGrad

— RMSProp
SGDNesterov
AdaDelta

— Adam

training cost
Ve

i i i
0 50 100 150 200
iterations over entire dataset

15/50

Weight decay in SGD and Adam: why AdamW matters
Many learning problems optimize the loss with L, norm penalty:

FOO =)+ A X3 (10)

16/50

Weight decay in SGD and Adam: why AdamW matters

Many learning problems optimize the loss with L, norm penalty:

FOO = fx) + Al (10)
where it is sometimes called “weight decay” in SGD, since its gradient decays weight:
x—nVa (fOO+AIXIE) e (1= 200x = nVef () (11
VilIxll3=2x weight decay

SGD on Ly-norm penalty

16/50

Weight decay in SGD and Adam: why AdamW matters

On the discrepancy between L, regularization and weight decay:

[16] Loshchilov et al. Decoupled weight decay regularization. ICLR 2018 (Google Scholar 4800+) e re0

Weight decay in SGD and Adam: why AdamW matters

On the discrepancy between L, regularization and weight decay:
e [, regularization and weight decay are not identical (for momentum/adaptive SGD).

[16] Loshchilov et al. Decoupled weight decay regularization. ICLR 2018 (Google Scholar 4800+) e re0

Weight decay in SGD and Adam: why AdamW matters

On the discrepancy between L, regularization and weight decay:
e [, regularization and weight decay are not identical (for momentum/adaptive SGD).
e [, regularization is not effective in Adam.

[16] Loshchilov et al. Decoupled weight decay regularization. ICLR 2018 (Google Scholar 4800+) e re0

Weight decay in SGD and Adam: why AdamW matters

On the discrepancy between L, regularization and weight decay:

e [, regularization and weight decay are not identical (for momentum/adaptive SGD).
e [, regularization is not effective in Adam.

e Weight decay is equally effective in both SGD and Adam.

[16] Loshchilov et al. Decoupled weight decay regularization. ICLR 2018 (Google Scholar 4800+) e re0

Weight decay in SGD and Adam: why AdamW matters

On the discrepancy between L, regularization and weight decay:

e [, regularization and weight decay are not identical (for momentum/adaptive SGD).
e [, regularization is not effective in Adam.

e Weight decay is equally effective in both SGD and Adam.

Decoupled SGD with momentum: (same trick applies to Adam)

myy1 = fm; + (1 - 5) (VE(x;, &) + Ax) (10)
gradient of loss with L, penalty
Xt+1 = Xp — My — 2’]7)\Xt (1 1)
weight decay

[16] Loshchilov et al. Decoupled weight decay regularization. ICLR 2018 (Google Scholar 4800+) e re0

Weight decay in SGD and Adam: why AdamW matters

On the discrepancy between L, regularization and weight decay:

e [, regularization and weight decay are not identical (for momentum/adaptive SGD).
e [, regularization is not effective in Adam.

e Weight decay is equally effective in both SGD and Adam.

Decoupled SGD with momentum: (same trick applies to Adam)

myy1 = fm; + (1 - 5) (VE(x;, &) + Ax) (10)
gradient of loss with L, penalty
Xt+1 = Xp — My — 2’]7)\Xt (1 1)
weight decay

AdamW is widely used in training STOA NNs from scratch or fine-tuning on downstream tasks.

[16] Loshchilov et al. Decoupled weight decay regularization. ICLR 2018 (Google Scholar 4800+) e re0

Table of Contents

® Advanced Optimization Methods

17/50

Table of Contents

® Advanced Optimization Methods
® | ookahead

18/50

Lookahead Optimizer: k steps forward, 1 step back

Different from the ideas e.g.,

19/50

Lookahead Optimizer: k steps forward, 1 step back

Different from the ideas e.g.,
¢ Adaptive element-wise learning rate, e.g., AdaGrad and Adam

19/50

Lookahead Optimizer: k steps forward, 1 step back

Different from the ideas e.g.,
¢ Adaptive element-wise learning rate, e.g., AdaGrad and Adam

e Accelerated optimization, e.g., Heavy-ball momentum and Nesterov momentum.

19/50

Lookahead Optimizer: k steps forward, 1 step back

Different from the ideas e.g.,
¢ Adaptive element-wise learning rate, e.g., AdaGrad and Adam

e Accelerated optimization, e.g., Heavy-ball momentum and Nesterov momentum.

19/50

Lookahead Optimizer: k steps forward, 1 step back

CIFAR-100 accuracy surface with Lookasigueao! indterpolation

—A— Slow weights ¢
-=-- Fast weights 6

Lookahead continued

12

A natural way to explore and exploit the landscape!

19/50

Algorithm 1: SGD

Algorithm 2: Lookahead

Input :Objective Fis(0), dataset S, inner-loop optimizer A, Input :Objective Fi5(8), dataset S, inner-loop optimizer A,
inner-loop step number & and learning rate {{n'"}, inner-loop step number k and learning rate {{n'"},
outer-loop learning rate o € (0, 1). outer-loop learning rate a € (0, 1).

fort—lz . T do fort=1,2,..,Tdo

vy ; v = Bi_1: Inner-loop optimization
, 0 forr=1.2,... kdo
| o0 2 AFs(0),004,121,8) = o2, 10,0, | o = AFs(0),02,,0,,8) = o, —n19®,
end end
Bl=v(”=(171)0,_1+1*v£_” (a=1)] 0, =(1—a)f;_ 1+(w“).]
end - P end . —
Output:6.4.s — Or outer-loop optimization Outpatico i = 8 outer-loop optimization

[25] Zhang et al. Lookahead optimizer: k steps forward, 1 step back. NeurlPS 2019.

20/50

Algorithm 1: SGD

Algorithm 2: Lookahead

Input :Objective Fs(0), dataset S, inner-loop optimizer A,
inner-loop step number k and learning rate {{n'"},
outer—loop learning rate o € (0, 1).

fort=1,2,...,7 do

o g

(t)

) (t) (t)
21,8) =vly —n:l19: 0

t) — 1-1)6,—1 +1 *v:l) (a=1)
end
Output:0.4.s = 61

Input :Objective Fs(8), dataset S, inner-loop optimizer A,
inner-loop step number k and learning rate {{n‘"},
outer-loop learning rate o € (0, 1).

forl =1,2,..,Tdo

® 29,y Inner-loop optimization

for 7=12,...kdo
| ol = AF5(0), 02,0, 8) = v, — 02,6,
end
6, =(1—a)8_1 +av”
end
Output:6.4.s = 67

® inner-loop optimization: k steps forward in SGD & LA

[25] Zhang et al. Lookahead optimizer: k steps forward, 1 step back. NeurlPS 2019.

20/50

Algorithm 1: SGD

Algorithm 2: Lookahead

Input :Objective Fs(8), dataset S, inner-loop optimizer A, Input :Objective Fs(8), dataset S, inner-loop optimizer A,
inner-loop step number k and learning rate {{n\"}, inner-loop step number k and learning rate {{n"},
outer-loop learning rate o € (0, 1). outer-loop learning rate o € (0, 1).

fort=1.2,....T do fort=1,2,..,Tdo

vy = 6,_1; vﬂ)701 13
forr=1,2,....k do : forr=1,2,...kdo

| vl = A(Fs(0), 012, n{2,,8) = v, — {1912, | o = AFs(8),02,,72,,8) = v, — 1,6,
end end

v =(1-1)6,_1 +1xv" (a=1)]

6, = (1—a)Bi_1 +(1v£”.]

end - ..
Giiptons =iz outer-loop optimization

end outer-loop optimization
Output:64.s = 67 pop

e outer-loop optimization: 1 step back in LA, while no step back in SGD

[25] Zhang et al. Lookahead optimizer: k steps forward, 1 step back. NeurlPS 2019.

20/50

Table of Contents

® Advanced Optimization Methods

® Sharpness-aware Minimization

21 /50

Flat Minima in Deep Learning

In many cases,

Loss

1(6)

| ; Parameter
(7 A 9’A 93 9’5’ 6
Flat minimum Sharp minimum

292 /50

Flat Minima in Deep Learning

In many cases,
DL — minimizing a loss function ¢(6)
Loss

1(0)

| ; ~Parameter
(7 A 9’A 93 9’5’ 6
Flat minimum Sharp minimum

292 /50

Flat Minima in Deep Learning

In many cases,
DL — minimizing a loss function ¢(6)

L
Highly non-convex (many local minima)! I(ZZS)

| ; Parameter
(7 A 9’A 93 9’5’ 6
Flat minimum Sharp minimum

292 /50

Flat Minima in Deep Learning
In many cases,

DL — minimizing a loss function ¢(6)

Highly non-convex (many local minima)!

¢ Q) Which is better, 84 or 65?

Loss

1(0)

GA 9’A 93 9’5’
Flat minimum Sharp minimum

Parameter

0

292 /50

Flat Minima in Deep Learning

In many cases,
DL — minimizing a loss function ¢(6)

L A
Highly non-convex (many local minima)! ICEZS)

i 3 ~ Parameter
(7 A 9’/—1 93 9’5’ 6
Flat minimum Sharp minimum

¢ Q) Which is better, 84 or 65?
e A) We prefer 0,4 to 65 even though ¢(04) > £(05p)

292 /50

Flat Minima in Deep Learning

In many cases,
DL — minimizing a loss function ¢(6)

L
Highly non-convex (many local minima)! ICEZS)

| ; Parameter
(7 A 9’A 93 9’5’ 6
Flat minimum Sharp minimum

¢ Q) Which is better, 84 or 65?
e A) We prefer 0,4 to 65 even though ¢(04) > £(05p)
® Why? Because 6, is more robust.

292 /50

Flat Minima in Deep Learning

In many cases,
DL — minimizing a loss function ¢(6)

L A
Highly non-convex (many local minima)! ICEZS)

i 3 ~ Parameter
(7 A 9’/—1 93 9’5’ 6
Flat minimum Sharp minimum

¢ Q) Which is better, 84 or 65?
e A) We prefer 0,4 to 65 even though ¢(04) > £(05p)

® Why? Because 6, is more robust.
* Imagine some perturbation: 64 — 0,05 — 0 = £(6),) < £(6%).

292 /50

Flat Minimum

Training Function

! Testing Function

23 /50

Let’s seek for a Flat Minimum

Flat Minima = Robust models (12)
= Resilient to data noise or model corruption (13)
= (often encountered in Al applications) (14)

24 /50

Let’s seek for a Flat Minimum

Flat Minima = Robust models
= Resilient to data noise or model corruption
= (often encountered in Al applications)

But, how?

24 /50

Sharpness-Aware Minimization (SAM)

Idea of SAM:

Define a robust loss ¢%(8) as worst-case loss within a neighborhood of 6.

17 (6)
N

[3] Foret et al. Sharpness-aware Minimization for Efficiently Improving Generalization. ICLR 2021. S

Sharpness-Aware Minimization (SAM)

Idea of SAM:

Define a robust loss ¢%(8) as worst-case loss within a neighborhood of 6.

(R(0) = max £(0 + €) (15) IR(6)

€eENg

[3] Foret et al. Sharpness-aware Minimization for Efficiently Improving Generalization. ICLR 2021. S

Intuition behind SAM

¢ Goal: Find the local minima 0 that are generalizable to test samples

26/50

Intuition behind SAM

¢ Goal: Find the local minima 0 that are generalizable to test samples

e Theorem (Flathess-based generalization bounds):

26/50

Intuition behind SAM

¢ Goal: Find the local minima 0 that are generalizable to test samples

e Theorem (Flathess-based generalization bounds):

Theorem 2
With high probability over S, the flatness-based bound says:

Lp(0) < Ls(0) + | max Ls(0+€) — Ls(0)| +h([0]5 /0%, (16)

N lell,<p

flatness measure

26/50

Intuition behind SAM

¢ Goal: Find the local minima 0 that are generalizable to test samples

e Theorem (Flathess-based generalization bounds):

Theorem 2
With high probability over S, the flatness-based bound says:

Lo(0) < Ls(6) + | max Ls(0+e€) — Ls(0)| +h((I0] /). (16)

flatness measure

where h(||0|\§ /p?) is a strictly increasing function of 8. It decreases as the number of
samples n = |S| increases.

26/50

Sharpness-Aware Minimization (SAM)

Lp(0) < Ls(0) + | max Ls(0+e€) ~ Ls(6)| +h(|6]3/r?) (17)
flatness measure
= max Ls(0 +€)+h(|0]3 /%) (18)

H5H2§P

27 /50

Sharpness-Aware Minimization (SAM)

The objective of SAM becomes:

0" := argmin Lp(0) = argmin max Lg(0 + ¢€). (17)
0 o llel,<p

27 /50

Sharpness-Aware Minimization (SAM)

The objective of SAM becomes:
0" := argmin Lp(0) = argmin max Lg(0 + ¢€). (17)
0

6 llell,<p

e the optimal € is given by (linear approximation through first-order Taylor expansion)

27 /50

Sharpness-Aware Minimization (SAM)

The objective of SAM becomes:

0" := argmin Lp(0) = argmin max Lg(0 + ¢€). (17)
0 o llel,<p

e the optimal € is given by (linear approximation through first-order Taylor expansion)

q—1
é:argmaxeTvg,Cs(O) :p.sign (veﬁs(a)) |VQ£5(0)|

; (18)
el <o (||v9£5(0)||;’)1/ ’

27 /50

Sharpness-Aware Minimization (SAM)

The objective of SAM becomes:

0" := argmin Lp(0) = argmin max Lg(0 + ¢€). (17)
0 o llel,<p

e the optimal € is given by (linear approximation through first-order Taylor expansion)

q—1
é:argmaxeTvg,Cs(O) :p.sign (veﬁs(a)) |VQ£5(0)|

; (18)
el <o (||v9£5(0)||;’)1/ ’

where 1/p+1/q=1

27 /50

Sharpness-Aware Minimization (SAM)

The objective of SAM becomes:

0" := argmin Lp(0) = argmin max Lg(0 + ¢€). (17)
0 0 llell,<p

e the optimal € is given by (linear approximation through first-order Taylor expansion)

,)"
¢ = argmaxe' VgLs(0) = p-sign (VeLs(H)) [VoLs(6)] 7 (18)
llell,<p (||V9£5(0)||Z)
where 1/p 4+ 1/q = 1 and the solution to a classical dual norm problem can solve this
approximation.

27 /50

Sharpness-Aware Minimization (SAM)

The objective of SAM becomes:

0" := argmin Lp(0) = argmin max Lg(0 + ¢€). (17)
0 0 llell,<p

e the optimal € is given by (linear approximation through first-order Taylor expansion)

q—1
€ = argmaxe' VoLs(0) = p-sign (VeLs(0)) [VoLs(®)l p
Il <r (Ivezs(®)1)

(18)

where 1/p 4+ 1/q = 1 and the solution to a classical dual norm problem can solve this
approximation.

e substituting € gives a gradient estimator

VoLM(0) .= VoLs(0+ &)~ VoLls(0)|ore (19)

27 /50

® The gradient estimator of SAM is given by:

\V/ ESAM()

VoLs(0)]o+e

(20)

w
VLW e
w / SAM
ST VL (W) i\:viu
Wad;/l/ —nNVL(Waqy)
—>

From original SAM paper.

28 /50

® The gradient estimator of SAM is given by:
VoLZM(0) ~ VoLs(0)]o1e (20)

¢ Recall that SAM requires 2-step gradient
descent (thus, twice slow)

We+1
»
We w2
Bl e m—
Waav _UVL(Wadv)

» *—¥<-4—~<-ﬁ—4_;____.>

From original SAM paper.

28 /50

® The gradient estimator of SAM is given by:
VoLZM(0) ~ VoLs(0)]o1e (20)

¢ Recall that SAM requires 2-step gradient
descent (thus, twice slow)

® 1st for computing € using Vo Ls(0)

We+1
»
We w2
Bl e m—
Waav _UVL(Wadv)

» *—¥<-4—~<-ﬁ—4_;____.>

From original SAM paper.

28 /50

® The gradient estimator of SAM is given by:
VoLZM(0) ~ VoLs(0)]o1e (20)

¢ Recall that SAM requires 2-step gradient
descent (thus, twice slow)
® 1st for computing € using Vo Ls(0)
e 2nd for computing Ve Ls(0)|e+

We+1
»
We | w2
Bl e m—
Waav _UVL(Wadv)

8——4-4—4—4—4_4_ﬁ_.>

From original SAM paper.

28 /50

® The gradient estimator of SAM is given by:
VoLZM(0) ~ VoLs(0)]o1e (20)

¢ Recall that SAM requires 2-step gradient
descent (thus, twice slow)

® 1st for computing € using Vo Ls(0)
* 2nd for computing Ve Ls(0)|e+e

e Set p = 2-norm and neighborhood-size
p = 0.05 as a default setup.

We+1
»
", W
P
Waav _UVL(Wadv)

8——4-4—4—4—4_4_*_.>

From original SAM paper.

28 /50

Verification of the flatness

(a) ERM. (b) SAM.

Loss surface visualization.

29 /50

Verification of the flatness

SGD SAM
~ Amax = 62.9 Amax = 18.6
§ Amax/As = 2.5 M Amax/As = 3.6
a
i3 [. , ,
0 20 40 60 0 20 40 60
2 Amax = 12.5 Amax = 8.9
é Amax/As = 1.7 Amax/As = 1.9
9]
o N T 71 P T
0 5 10 0 5 10
S Amax = 24.2 Amax = 1.0
<)\max/)\s =11.4)\max/)\f) =2.6
5 f
w T T T T
0 10 20 0 10 20
p(A) p(A)

Hessian spectra.

29 /50

Results (i.e., SAM > ERM)

e SAM consistently improves classification tasks, particularly with label noises

SAM Standard Training (No SAM)
Model Epoch Top-1 Top-5 Top-1 Top-5
ResNet-50 100 22-5i041 6.2840.08 229101 6.6240.11
200 214,01 5.8240.03 | 223401 6.37+0.04
400 20-9:‘:0.1 5.51i0_03 22.3j:0.1 6.40:‘:0405
ResNet-101 100 20.2_¢, 5124003 | 21.2401 5.66+0.05
200 19-4:‘:0,1 4.76i0_03 20.9j:0.1 5.66i0_04
400 19.01 001 4.65+0.05 | 22.340.1 6.41 10.06
ResNet-152 100 19-2:l:<0.01 4.69;5)_04 20.4;|:<U.0 5~39:t0.06
200 18-5i041 4-37i0403 20.310.2 5~39i0407
400 18.41 001 4.35+0.04 | 20.9+<0.0 5.8410.07

Table: Test error rates for ResNets trained on ImageNet, with and without SAM.

30/50

Results on ViT (and MLP-Mixer)

« < -
: < o
—
s
. |

10 0 10 60 10 0 -10 0 10
05 05 05 o5 05
00 o5 05 05 0s

Z 00 & 00 Z 00 - ;
05 05 05 0s
10710 10710 10710 10710 107

(c) ResNet (d) ViT (e) Mixer (f) VI-SAM (g) Mixer-SAM

Figure: Cross-entropy loss landscapes of ResNet-152, ViT-B/16, and Mixer-B/16. ViT and
MLP-Mixer converge to sharper regions than ResNet when trained on ImageNet with the basic
Inception-style preprocessing. SAM significantly smooths the landscapes.

31 /50

Results on ViT (and MLP-Mixer)

Table: Number of parameters, Hessian dominate eigenvalue \,.x, training error at convergence Liin,
average flatness L7, , accuracy on ImageNet, and accuracy/robustness on ImageNet-C. ViT and
MLP-Mixer suffer divergent x and converge at sharp regions; SAM rescues that and leads to better

generalization.

ResNet-152- . ViT-B/16- . Mixer-B/16-

ResNet-152 SAM ViT-B/16 SAM Mixer-B/16 SAM

#Params 60M 87M 59M
Hessian)\, 179.8 42.0 738.8 20.9 1644.4 22,5
Lirain 0.86 0.90 0.65 0.82 0.45 0.97
N ™ 2.39 2.16 6.66 0.96 7.78 1.01
ImageNet (%) 78.5 79.3 74.6 79.9 66.4 77.4
ImageNet-C (%) 50.0 52.2 46.6 56.5 33.8 48.8

22 /50

Table of Contents

@ Introduction to Distributed Deep Learning

23 /50

Table of Contents

@ Introduction to Distributed Deep Learning
® Preliminary for Distributed Optimization

34 /50

Why Distributed Deep Learning Infrastructure Matters
Recall that

rxe[lvel] <o ()

VBT

o

Be?

To achieve an e-accurate solution, i.e., 1 3"/ E “\Vf(x(f))Hz] < ¢, it requires O (:)

FON PR Pe)

Device 1

x x@ e

Device 1

SGD Mini-batch SGD

135/50

Why Distributed Deep Learning Infrastructure Matters

Recall that
I=o ()

To achieve an e-accurate solution, i.e., 2 >°/_ E {||Vf(x(f))]|] < ¢, it requires O (:)

1 e

g
2

FON PFON S

Device 1

pasy x@ x®

Device 1

SGD Mini-batch SGD

Increasing B may linearly reduce the required steps to reach a target performance

125/50

Why Distributed Deep Learning Infrastructure Matters

ol | (P | (P _ M&
()& 3)
Mini-batch SGD x® B Qx

Data-parallelism

Device 1
Device 1

Device 2

Increasing B may linearly reduce the required steps to reach a target performance
B := lg'OC n
~~

L
normally fixed increasing

135/50

Various Types of Distributed Learning Infrastructure

Device 1

Star/Parameter server
O ((ts + tum)n)

t; is the latency, t,, is inverse bandwidth, m is the message size, and n is the number of nodes.

26/50

Various Types of Distributed Learning Infrastructure

Device 1 Device 1 Device 2

Star/Parameter server Complete
O ((ts + twm)n) (@) (ts log, n + tp(jn—1)m)
t; is the latency, t,, is inverse bandwidth, m is the message size, and n is the number of nodes.

26/50

Various Types of Distributed Learning Infrastructure

{Device 1][Devioe 2} [Device 3} [Device 4]

N

Device 1 @.——&vice 2

Device 3 ‘—'@ce 4 {Device 1 } [Devioe 2}[Device 3}[Device 4}
Star/Parameter server Complete All-Reduce
O ((ts + tom)n) o (ts log, n + t(jn —1)m) o ((ts + tom) logy n)

t; is the latency, t,, is inverse bandwidth, m is the message size, and n is the number of nodes.

26/50

Various Types of Distributed Learning Infrastructure

{Device 1][Devioe 2} [Device 3} [Device 4]

./”/””
Device 1
Device 1 @.——&vice 2

Device 3 ‘—'@ce 4 {Device 1 } [Devioe 2}[Device 3}[Device 4}
Star/Parameter server Complete All-Reduce
O ((ts + tom)n) o (ts log, n + t(jn —1)m) o ((ts + tom) logy n)

t; is the latency, t,, is inverse bandwidth, m is the message size, and n is the number of nodes.

e Parameter Servers bandwidth will be decreased by the number of nodes, and is
sensitive to the central failures.

26/50

Various Types of Distributed Learning Infrastructure

{Device 1][Devioe 2} [Device 3} [Device 4]

./”/””
Device 1
Device 1 @.——&vice 2

Device 3 ‘—'@ce 4 {Device 1 } [Devioe 2}[Device 3}[Device 4}
Star/Parameter server Complete All-Reduce
O ((ts + tom)n) o (ts log, n + t(jn —1)m) o ((ts + tom) logy n

t; is the latency, t,, is inverse bandwidth, m is the message size, and n is the number of nodes.

e Parameter Servers bandwidth will be decreased by the number of nodes, and is
sensitive to the central failures.

e All-Reduce enables full bandwidth.

26/50

Extending Notations to Distributed Optimization (with a siight abuse of notation)

¢ To minimize a sum of stochastic functions, with only access to stochastic samples:

f(X*):min{ Z(ﬁ = Eec, | <x;e>]>}.

x€ERA

27 /50

Extending Notations to Distributed Optimization (with a siight abuse of notation)

¢ To minimize a sum of stochastic functions, with only access to stochastic samples:

f(X*):min{ Z(ﬁ = Eec, | <x;e>]>}.

x€ERA

* The functions f; represents the loss function on client/node i with local dataset D;.

27 /50

Extending Notations to Distributed Optimization (with a siight abuse of notation)

¢ To minimize a sum of stochastic functions, with only access to stochastic samples:

f(x) = min { Z (fi(x) = Beep, [Fi(x; 5)})} :
* The functions f; represents the loss function on client/node i with local dataset D;.
e Each local distribution D; may be

@ identical, e.g. data center case (achieved by shuffling across nodes)

@ different, e.g. EdgeAl case (thus has data heterogeneity issue).

37 /50

Extending Notations to Distributed Optimization (with a siight abuse of notation)

¢ To minimize a sum of stochastic functions, with only access to stochastic samples:

f(x) = min { Z (fi(x) = Beep, [Fi(x; 5)})} :
* The functions f; represents the loss function on client/node i with local dataset D;.
e Each local distribution D; may be

@ identical, e.g. data center case (achieved by shuffling across nodes)

@ different, e.g. EdgeAl case (thus has data heterogeneity issue).
e Each of these clients/nodes i performs 1 local update.

37 /50

Extending Notations to Distributed Optimization (with a siight abuse of notation)

¢ To minimize a sum of stochastic functions, with only access to stochastic samples:

f(X*)=min{ Z(fz = Eeen, [(X;&)D}~

xERA

The functions f; represents the loss function on client/node i with local dataset D;.
Each local distribution D; may be
@ identical, e.g. data center case (achieved by shuffling across nodes)
@ different, e.g. EdgeAl case (thus has data heterogeneity issue).
Each of these clients/nodes i performs 1 local update.
The models are aggregated to form the new global model:

x(HD ¢ Lsm (x(’) - 77181‘("5”)) . (C-SGD)

where 7, is the local step-size and g;(x\") := VF;(x\"; ¢).

37 /50

Extending Notations to Distributed Optimization (with a siight abuse of notation)

¢ To minimize a sum of stochastic functions, with only access to stochastic samples:

f(X*)=min{ Z(fz = Eeen, [(X;&)D}~

xERA

The functions f; represents the loss function on client/node i with local dataset D;.
Each local distribution D; may be
@ identical, e.g. data center case (achieved by shuffling across nodes)
@ different, e.g. EdgeAl case (thus has data heterogeneity issue).
Each of these clients/nodes i performs 1 local update.
The models are aggregated to form the new global model:

x(HD ¢ Lsm (x(’) - 77181‘("5”)) . (C-SGD)

where 7, is the local step-size and g;(x\") := VF;(x\"; ¢).
The convergence rate becomes (under the same assumptlons as SGD)

L5 o] <0 (i)

37 /50

Speed-up of Distributed Deep Learning (Data Parallelism)

Table: Distributed training ResNet-50 on ImageNet

\ Metrics \ 4 nodes (32 GPUs) 8 nodes (64 GPUs) 16 nodes (128 GPUs) 32 nodes (256 GPUs) \ Pattern

07 07 0 07
All-Reduce SGD ‘ Accuracy ‘ 76.2% 76.4% 76.3% 76.2%

Time 22.0 hrs. 14.0 hrs. 8.5 hrs. 5.1 hrs.

R

[1] Assran et al. Stochastic gradient push for distributed deep learning. ICML 2019.

28/50

Speed-up of Distributed Deep Learning (Data Parallelism)

Table: Distributed training ResNet-50 on ImageNet

\ Metrics \ 4 nodes (32 GPUs) 8 nodes (64 GPUs) 16 nodes (128 GPUs) 32 nodes (256 GPUs) \ Pattern

Accuracy 76.2% 76.4% 76.3% 76.2% =~
All-Reduce SGD ‘ Time ‘ 22,0 hrs. 14.0 hrs. 8.5 hrs. 5.1 hrs, \

Scaling Deep Learning training with more GPUs!

[1] Assran et al. Stochastic gradient push for distributed deep learning. ICML 2019.

28/50

No Free Lunch in Distributed Deep Learning

Steps to Reach 0.25 Validation Error

221

Steps

N

262
Batch Size

e Limitation 1: Diminishing returns of data parallelism with large mini-batch sizes.

ol oo
7 28 29 2102112122132142152

29/50

No Free Lunch in Distributed Deep Learning

2 2v 2
T e 2
. u 3u
2 2 b
22’ a2" < @2
g - B \ e
& R &> &%
. Fd
2 2 E;
: , 2
2 N 2 N 25
2° - 2! o 2t —
Sty se T i
Batch Size Batch Size Batch Size
CNN on MNIST (b) Simple CNN on Fashion MNIST (c AR-10

(d) ResNet-50 on ImageNet

-
o
o
2v 2 2 .
o wl .
2o 83 L
g2 g iy
@z <
: n 5
2 £
o e
] H el - P
Loy b sy
Batch Size Batch Size Batch Size

(e) ResNet-50 on Open Tmages

(F) Transformer on LM1B

Batch Size

(g) Transformer on Common Craw

ST ST

1

Steps

0

Steps.

272"
Batch Size

(h) VGG-11 on TmageNet

27272 2"
Batch Size

(i) LSTM on LM1B

Steps to Reach 0.25 Validation Error

T T T T

~ -

6 217 2‘8 2I9 2{].025.125.225.325.42%[5216
Batch Size

¢ Limitation 1: Diminishing returns of data parallelism with large mini-batch sizes.

129/50

No Free Lunch in Distributed Deep Learning

—~ 12 =

©» L =

5 1.0 —

§ =

2 o8 /

.’cT) —— All-Reduce (10 Gbps Ethernet)
3 0.6 —=— All-Reduce (100 Gbps InfiniBand)
£

= 04

4 8 16 32

Number of nodes

e Limitation 2: Communication bottleneck hinders the training scalability.

29/50

No Free Lunch in Distributed Deep Learning

Steps

ation Error
T T

21 Steps to Reach 0.25 Valid

26 2|7 218 2|9 21102\112|1221132|142115216
Batch Size

Time per iteration (s)

0.8

0.6

0.4

—— All-Reduce (10 Gbps Ethernet)
—=— All-Reduce (100 Gbps InfiniBand)

4 8 16 32

Number of nodes

Limitation 1: Diminishing returns of data parallelism with large mini-batch sizes.
Limitation 2: Communication bottleneck hinders the training scalability.

29/50

Answers to the Aforementioned Limitations

Large-scale training in the data center has some interesting challenges:

@ The diminishing return of large-batch training [17, 24, 15, 14]

[17] Shallue et al. Measuring the effects of data parallelism on neural network training. JMLR 2019.

[24] You et al. Imagenet training in minutes. ICPP 2018.

[19] Stich et al. Sparsified sgd with memory. NeurlPS 2018.

[18] Stich et al. Local SGD converges fast and communicates little. ICLR 2019.

[6] Karimireddy et al. Error Feedback Fixes SignSGD and other Gradient Compression Schemes. ICML 2019.

[22] Vogels et al. PowerSGD: Practical Low-Rank Gradient Compression for Distributed Optimization. NeurlPS 2019.
[21] Vogels et al. Practical Low-Rank Communication Compression in Decentralized Deep Learning. NeurlPS 2020.
[10] Koloskova et al. A unified theory of decentralized SGD with changing topology and local updates. ICML 2020.
[15] Lin et al. Don’t Use Large Mini-batches, Use Local SGD. ICLR 2020.

[14] Lin et al. Extrapolation for Large-batch Training in Deep Learning. ICML 2020.

[9] Koloskova*, Lin*, et al. Decentralized Deep Learning with Arbitrary Communication Compression. ICLR 2020.
[11] Kong*, Lin*#, et al. Consensus Control for Decentralized Deep Learning. ICML 2021.

[8] Koloskova et al. An improved analysis of gradient tracking for decentralized machine learning. NeurlPS 2021.

[20] Vogels et al. Relaysum for decentralized deep learning on heterogeneous data. NeurlPS 2021. 20/50

Answers to the Aforementioned Limitations

Large-scale training in the data center has some interesting challenges:

@ The diminishing return of large-batch training [17, 24, 15, 14]
® Communication-efficient training techniques

® | ess frequent communication: Local SGD [18, 15, 10]
® Reducing communication cost per round—compressed communication: [19, 6, 22, 9, 21]
® Reducing communication cost per round—decentralized communication: [10, 11, 8, 20]

[17] Shallue et al. Measuring the effects of data parallelism on neural network training. JMLR 2019.

[24] You et al. Imagenet training in minutes. ICPP 2018.

[19] Stich et al. Sparsified sgd with memory. NeurlPS 2018.

[18] Stich et al. Local SGD converges fast and communicates little. ICLR 2019.

[6] Karimireddy et al. Error Feedback Fixes SignSGD and other Gradient Compression Schemes. ICML 2019.

[22] Vogels et al. PowerSGD: Practical Low-Rank Gradient Compression for Distributed Optimization. NeurlPS 2019.
[21] Vogels et al. Practical Low-Rank Communication Compression in Decentralized Deep Learning. NeurlPS 2020.
[10] Koloskova et al. A unified theory of decentralized SGD with changing topology and local updates. ICML 2020.
[15] Lin et al. Don’t Use Large Mini-batches, Use Local SGD. ICLR 2020.

[14] Lin et al. Extrapolation for Large-batch Training in Deep Learning. ICML 2020.

[9] Koloskova*, Lin*, et al. Decentralized Deep Learning with Arbitrary Communication Compression. ICLR 2020.
[11] Kong®, Lin*#, et al. Consensus Control for Decentralized Deep Learning. ICML 2021.

[8] Koloskova et al. An improved analysis of gradient tracking for decentralized machine learning. NeurlPS 2021.

[20] Vogels et al. Relaysum for decentralized deep learning on heterogeneous data. NeurlPS 2021. 20/50

Table of Contents

@ Introduction to Distributed Deep Learning

® Federated Learning

41 /50

All previous aspects are about efficiency!

What if the privacy is a concern?

42 /50

Where does ML data come from?

43 /50

Where does ML data come from?

Edge | Devices

43 /50

Where does ML data come from?

Edge | Devices

43 /50

Where does ML data come from?

Edge | Devices

43 /50

Where does ML data come from?

Edge | Devices

43 /50

Where does ML data come from?

Cloud | Data centers

43 /50

Where does ML data come from?

Data centers

43 /50

Where does ML data come from?

Data centers

Concerns, e.g., data quality and data privacy, are rising!

43 /50

Collaborative learning alleviates the data privacy concern

Data centers

Edge

An example: Federated Learning (FL)

44 /50

Collaborative learning alleviates the data privacy concern

Data centers

Edge

An example: Federated Learning (FL)

Instead of sending sensitive client data over the internet, just share client models!
44 /50

The backbone of FL: Federated Averaging (FedAvg)

lient 2 Client 3
a N p
Wl ‘ } ‘
< J 4

The backbone of FL: Federated Averaging (FedAvg)

The backbone of FL: Federated Averaging (FedAvg)

The backbone of FL: Federated Averaging (FedAvg)

The backbone of FL: Federated Averaging (FedAvg)

Finite-sum empirical risk minimization problem:

45 /50

The backbone of FL: Federated Averaging (FedAvg)

Finite-sum empirical risk minimization problem:

f(') = min {f(X) =2 > (e) } .

i=1

p Client 1 p Client 2
HE HE

XD

® The function f; represents the loss function on client i;

Server

XD 7];‘% XK: (x -x)
k=1

45 /50

The backbone of FL: Federated Averaging (FedAvg)

Finite-sum empirical risk minimization problem:

fx*) = min {f(X) = 3 (700 = Been, [Fi(x:6)]) } :

R4
x€ i—1

XD 1+1)
\ : ® The function f; represents the loss function on client i;
® D; indicates the local data distribution of client i;

Server

XD 7];‘% XK: (x -x)
k=1

45 /50

The backbone of FL: Federated Averaging (FedAvg)

Device 1

Client 3

o || ol

Client 1 § ___Client 2
(1)
(+1) x A+
Server

XD n% XK: (x -x)
k=1

Finite-sum empirical risk minimization problem:

fx*) = min {f(X) = 3 (700 = Been, [Fi(x:6)]) } :

x€R4

® The function f; represents the loss function on client i;
* D; indicates the local data distribution of client 7;

® Fi(x,&) corresponds to the sample-wise loss function;

45 /50

The backbone of FL: Federated Averaging (FedAvg)

Finite-sum empirical risk minimization problem:

fx*) = min {f(x) = 3 (700 = Been, [Fi(x:6)]) } :

o || ol

x€R4

Client1 Client 2

g I,m ,ml =3 § II x| II ,m: X

Client 3

(" Devie1

(1)
(1+1) x (1)

The function f; represents the loss function on client i;

Server

K

1
(t+1)) _p=) _ x®
X —x =g ;ﬂ (x X)

D; indicates the local data distribution of client i;

® Fi(x,&) corresponds to the sample-wise loss function;

® FedAvg performs multiple local update steps per round.

45 /50

Challenges of FL [13, 4, 23]

Communication overhead
slow & unreliable networks

Data heterogeneity
highly non-identically distributed data

Systems heterogeneity
variable hardware, power, etc

Privacy concerns
privacy leakage

[13] Li et al. Federated Learning: Challenges, Methods, and Future Directions. 2020.
[4] Kairouz et al. Advances and open problems in federated learning. 2021.
[23] Wang et al. A Field Guide to Federated Optimization. 2021.

46 /50

Challenges of FL [13, 4, 23]

Data heterogeneity
highly non-identically distributed data

[13] Li et al. Federated Learning: Challenges, Methods, and Future Directions. 2020.
[4] Kairouz et al. Advances and open problems in federated learning. 2021.
[23] Wang et al. A Field Guide to Federated Optimization. 2021.

46 /50

Data heterogeneity in FL

[HE | client update
I

1 4

! server update
i
I
'

E] SGD update
u @ server| .
x A P ! client drift
@ “ i I *
o ‘ H B I true opt.
T}
W [client opt.

Y2 client 2

Client drift issue defined in [5].

[5] Karimireddy et al. SCAFFOLD: Stochastic controlled averaging for federated learning. ICML 2020.

47 /50

Data heterogeneity in FL

client 1

[HE | client update
I

1 A

! server update
i
I
'

] SGD update

<

! server,
|

| client drift

//
Y
r A f{ - |
| S E‘ :‘ N Ea
. o W true opt.
H x2 X
2 I client opt.

client 2

e
°

Client drift issue defined in [5].

Data-dissimilarity ¢> > 0 causes drift when doing local steps.

Ei |[VAi(x) = VFOI?| < ¢

47 /50

[5] Karimireddy et al. SCAFFOLD: Stochastic controlled averaging for federated learning. ICML 2020.

Table of Contents

@ Introduction to Distributed Deep Learning

® Summary

48 /50

@ Data-parallelism is the current workhorse for large-scale deep learning training

49/50

@ Data-parallelism is the current workhorse for large-scale deep learning training
® Theoretically linear speedup by adding more GPUs

49/50

@ Data-parallelism is the current workhorse for large-scale deep learning training

® Theoretically linear speedup by adding more GPUs
¢ Diminishing returns for large-batch region

49/50

@ Data-parallelism is the current workhorse for large-scale deep learning training

® Theoretically linear speedup by adding more GPUs
® Diminishing returns for large-batch region
® Communication bottleneck for large-scale training

49/50

@ Data-parallelism is the current workhorse for large-scale deep learning training

® Theoretically linear speedup by adding more GPUs
® Diminishing returns for large-batch region
® Communication bottleneck for large-scale training

® Communication-efficient training techniques

49/50

@ Data-parallelism is the current workhorse for large-scale deep learning training

® Theoretically linear speedup by adding more GPUs
® Diminishing returns for large-batch region
® Communication bottleneck for large-scale training

® Communication-efficient training techniques
® Compressed communication

49/50

@ Data-parallelism is the current workhorse for large-scale deep learning training

® Theoretically linear speedup by adding more GPUs
® Diminishing returns for large-batch region
® Communication bottleneck for large-scale training

® Communication-efficient training techniques
® Compressed communication
® Aline of research requires unbiased gradient estimator, which is non-trivial

49/50

@ Data-parallelism is the current workhorse for large-scale deep learning training

® Theoretically linear speedup by adding more GPUs
® Diminishing returns for large-batch region
® Communication bottleneck for large-scale training

® Communication-efficient training techniques
® Compressed communication

® Aline of research requires unbiased gradient estimator, which is non-trivial
® Error-feedback enables the convergence for arbitrary compressors, even for biased estimator

49/50

@ Data-parallelism is the current workhorse for large-scale deep learning training
® Theoretically linear speedup by adding more GPUs
® Diminishing returns for large-batch region
® Communication bottleneck for large-scale training

® Communication-efficient training techniques
® Compressed communication

® Aline of research requires unbiased gradient estimator, which is non-trivial
® Error-feedback enables the convergence for arbitrary compressors, even for biased estimator

® Decentralized communication

49/50

@ Data-parallelism is the current workhorse for large-scale deep learning training
® Theoretically linear speedup by adding more GPUs
® Diminishing returns for large-batch region
® Communication bottleneck for large-scale training

® Communication-efficient training techniques
® Compressed communication

® Aline of research requires unbiased gradient estimator, which is non-trivial
® Error-feedback enables the convergence for arbitrary compressors, even for biased estimator

® Decentralized communication
® Nodes only communicate with its neighborhood, reducing the cost per iteration.

49/50

@ Data-parallelism is the current workhorse for large-scale deep learning training
® Theoretically linear speedup by adding more GPUs
® Diminishing returns for large-batch region
® Communication bottleneck for large-scale training

® Communication-efficient training techniques
® Compressed communication

® Aline of research requires unbiased gradient estimator, which is non-trivial
® Error-feedback enables the convergence for arbitrary compressors, even for biased estimator

® Decentralized communication

® Nodes only communicate with its neighborhood, reducing the cost per iteration.
® Trade-off between degraded test accuracy and improved communication efficiency.

49/50

Thanks & Question Time!

[1] M. Assran, N. Loizou, N. Ballas, and M. Rabbat. Stochastic gradient push for
distributed deep learning. In International Conference on Machine Learning, pages
344-353. PMLR, 2019.

[2] J. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient methods for online learning
and stochastic optimization. Journal of machine learning research, 12(7), 2011.

[3] P. Foret, A. Kleiner, H. Mobahi, and B. Neyshabur. Sharpness-aware minimization for
efficiently improving generalization. In International Conference on Learning
Representations, 2021.

[4] P. Kairouz, H. B. McMahan, B. Avent, A. Bellet, M. Bennis, A. N. Bhagoji,

K. Bonawitz, Z. Charles, G. Cormode, R. Cummings, et al. Advances and open
problems in federated learning. Foundations and Trends® in Machine Learning,
14(1-2):1-210, 2021.

[5] S. P. Karimireddy, S. Kale, M. Mohri, S. Reddi, S. Stich, and A. T. Suresh. Scaffold:
Stochastic controlled averaging for federated learning. In International Conference on
Machine Learning, pages 5132-5143. PMLR, 2020.

[6] S. P. Karimireddy, Q. Rebjock, S. Stich, and M. Jaggi. Error feedback fixes signsgd
and other gradient compression schemes. In International Conference on Machine
Learning, pages 3252-3261. PMLR, 2019.

[7] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

50/50

[8] A. Koloskova, T. Lin, and S. U. Stich. An improved analysis of gradient tracking for
decentralized machine learning. Advances in Neural Information Processing
Systems, 34:11422-11435, 2021.

[9] A. Koloskova, T. Lin, S. U. Stich, and M. Jaggi. Decentralized deep learning with
arbitrary communication compression. In International Conference on Learning
Representations, 2020.

[10] A. Koloskova, N. Loizou, S. Boreiri, M. Jaggi, and S. Stich. A unified theory of
decentralized sgd with changing topology and local updates. In International
Conference on Machine Learning, pages 5381-5393. PMLR, 2020.

[11] L. Kong, T. Lin, A. Koloskova, M. Jaggi, and S. U. Stich. Consensus control for
decentralized deep learning. In International Conference on Machine Learning, 2021.

[12] H. Li, Z. Xu, G. Taylor, C. Studer, and T. Goldstein. Visualizing the loss landscape of
neural nets. Advances in neural information processing systems, 31, 2018.

[13] T. Li, A. K. Sahu, A. Talwalkar, and V. Smith. Federated learning: Challenges,
methods, and future directions. IEEE signal processing magazine, 37(3):50-60,
2020.

[14] T. Lin, L. Kong, S. Stich, and M. Jaggi. Extrapolation for large-batch training in deep
learning. In International Conference on Machine Learning, pages 6094—6104.
PMLR, 2020.

50/50

[15] T. Lin, S. U. Stich, K. K. Patel, and M. Jaggi. Don’t use large mini-batches, use local
sgd. In International Conference on Learning Representations, 2020.

[16] I. Loshchilov and F. Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

[17] C. J. Shallue, J. Lee, J. Antognini, J. Sohl-Dickstein, R. Frostig, and G. E. Dahl.
Measuring the effects of data parallelism on neural network training. arXiv preprint
arXiv:1811.03600, 2018.

[18] S. U. Stich. Local sgd converges fast and communicates little. In International
Conference on Learning Representations, 2019.

[19] S. U. Stich, J.-B. Cordonnier, and M. Jaggi. Sparsified sgd with memory. In Advances
in Neural Information Processing Systems, pages 4447—-4458, 2018.

[20] T. Vogels, L. He, A. Koloskova, S. P. Karimireddy, T. Lin, S. Stich, and M. Jaggi.
Relaysum for decentralized deep learning on heterogeneous data. 2021.

[21] T. Vogels, S. P. Karimireddy, and M. Jaggi. Practical low-rank communication
compression in decentralized deep learning. In NeurlPS, 2020.

[22] T. Vogels, S. P. Karinireddy, and M. Jaggi. Powersgd: Practical low-rank gradient
compression for distributed optimization. Advances In Neural Information Processing
Systems 32 (Nips 2019), 32(CONF), 2019.

[23] J. Wang, Z. Charles, Z. Xu, G. Joshi, H. B. McMahan, M. Al-Shedivat, G. Andrew,
S. Avestimehr, K. Daly, D. Data, et al. A field guide to federated optimization. arXiv
preprint arXiv:2107.06917, 2021.

50/50

[24] Y. You, Z. Zhang, C.-J. Hsieh, J. Demmel, and K. Keutzer. Imagenet training in
minutes. In Proceedings of the 47th International Conference on Parallel Processing,
pages 1-10, 2018.

[25] M. Zhang, J. Lucas, J. Ba, and G. E. Hinton. Lookahead optimizer: k steps forward, 1
step back. Advances in neural information processing systems, 32, 2019.

50/50

	Stochastic Gradient Descent (SGD) and Mini-batch SGD
	Accelerated and Stabilized Optimization Methods
	Advanced Optimization Methods
	Lookahead
	Sharpness-aware Minimization

	Introduction to Distributed Deep Learning
	Preliminary for Distributed Optimization
	Federated Learning
	Summary

	References

